Dissection of CENP-C-directed centromere and kinetochore assembly. 2009

Kirstin J Milks, and Ben Moree, and Aaron F Straight
Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.

Eukaryotic cells ensure accurate chromosome segregation in mitosis by assembling a microtubule-binding site on each chromosome called the kinetochore that attaches to the mitotic spindle. The kinetochore is assembled specifically during mitosis on a specialized region of each chromosome called the centromere, which is constitutively bound by >15 centromere-specific proteins. These proteins, including centromere proteins A and C (CENP-A and -C), are essential for kinetochore assembly and proper chromosome segregation. How the centromere is assembled and how the centromere promotes mitotic kinetochore formation are poorly understood. We have used Xenopus egg extracts as an in vitro system to study the role of CENP-C in centromere and kinetochore assembly. We show that, unlike the histone variant CENP-A, CENP-C is not maintained at centromeres through spermatogenesis but is assembled at the sperm centromere from the egg cytoplasm. Immunodepletion of CENP-C from metaphase egg extract prevents kinetochore formation on sperm chromatin, and depleted extracts can be complemented with in vitro-translated CENP-C. Using this complementation assay, we have identified CENP-C mutants that localized to centromeres but failed to support kinetochore assembly. We find that the amino terminus of CENP-C promotes kinetochore assembly by ensuring proper targeting of the Mis12/MIND complex and CENP-K.

UI MeSH Term Description Entries
D008297 Male Males
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010063 Ovum A mature haploid female germ cell extruded from the OVARY at OVULATION. Egg,Egg, Unfertilized,Ova,Eggs, Unfertilized,Unfertilized Egg,Unfertilized Eggs
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002503 Centromere The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division. Centromeres
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins

Related Publications

Kirstin J Milks, and Ben Moree, and Aaron F Straight
July 2023, Molecular cell,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
July 2020, The EMBO journal,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
November 2016, Cell reports,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
November 2000, Human molecular genetics,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
December 2012, Chromosoma,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
December 2015, Journal of cell science,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
January 2017, The Plant cell,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
August 1995, Molecular biology of the cell,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
March 2011, Current biology : CB,
Kirstin J Milks, and Ben Moree, and Aaron F Straight
January 2002, Journal of structural biology,
Copied contents to your clipboard!