Projection x-ray imaging with photon energy weighting: experimental evaluation with a prototype detector. 2009

Polad M Shikhaliev
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA. pshikhal@lsu.edu

The signal-to-noise ratio (SNR) in x-ray imaging can be increased using a photon counting detector which could allow for rejecting electronics noise and for weighting x-ray photons according to their energies. This approach, however, was not feasible for a long time because photon counting x-ray detectors with very high count rates, good energy resolution and a large number of small pixels were required. These problems have been addressed with the advent of new detector materials, fast readout electronics and powerful computers. In this work, we report on the experimental evaluation of projection x-ray imaging with a photon counting cadmium-zinc-telluride (CZT) detector with energy resolving capabilities. The detector included two rows of pixels with 128 pixels per row with 0.9 x 0.9 mm(2) pixel size, and a 2 Mcount pixel(-1) s(-1) count rate. The x-ray tube operated at 120 kVp tube voltage with 2 mm Al-equivalent inherent filtration. The x-ray spectrum was split into five regions, and five independent x-ray images were acquired at a time. These five quasi-monochromatic x-ray images were used for x-ray energy weighting and material decomposition. A tissue-equivalent phantom was used including contrast elements simulating adipose, calcifications, iodine and air. X-ray energy weighting improved the SNR of calcifications and iodine by a factor of 1.32 and 1.36, respectively, as compared to charge integrating. Material decomposition was performed by dual energy subtraction. The low- and high-energy images were generated in the energy ranges of 25-60 keV and 60-120 keV, respectively, by combining five monochromatic image data into two. X-ray energy weighting was applied to low- and high-energy images prior to subtraction, and this improved the SNR of calcifications and iodine in dual energy subtracted images by a factor of 1.34 and 1.25, respectively, as compared to charge integrating. The detector energy resolution, spatial resolution, linearity, count rate, noise and image uniformity were investigated. The limitations of this technology were emphasized and possible solutions were discussed.

UI MeSH Term Description Entries
D013691 Tellurium An element that is a member of the chalcogen family. It has the atomic symbol Te, atomic number 52, and atomic weight 127.60. It has been used as a coloring agent and in the manufacture of electrical equipment. Exposure may cause nausea, vomiting, and CNS depression.
D014965 X-Rays Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source. Grenz Ray,Grenz Rays,Roentgen Ray,Roentgen Rays,X Ray,X-Ray,Xray,Radiation, X,X-Radiation,Xrays,Ray, Grenz,Ray, Roentgen,Ray, X,Rays, Grenz,Rays, Roentgen,Rays, X,X Radiation,X Rays,X-Radiations
D015032 Zinc A metallic element of atomic number 30 and atomic weight 65.38. It is a necessary trace element in the diet, forming an essential part of many enzymes, and playing an important role in protein synthesis and in cell division. Zinc deficiency is associated with ANEMIA, short stature, HYPOGONADISM, impaired WOUND HEALING, and geophagia. It is known by the symbol Zn.
D016014 Linear Models Statistical models in which the value of a parameter for a given value of a factor is assumed to be equal to a + bx, where a and b are constants. The models predict a linear regression. Linear Regression,Log-Linear Models,Models, Linear,Linear Model,Linear Regressions,Log Linear Models,Log-Linear Model,Model, Linear,Model, Log-Linear,Models, Log-Linear,Regression, Linear,Regressions, Linear
D017785 Photons Discrete concentrations of energy, apparently massless elementary particles, that move at the speed of light. They are the unit or quantum of electromagnetic radiation. Photons are emitted when electrons move from one energy state to another. (From Hawley's Condensed Chemical Dictionary, 11th ed)
D019047 Phantoms, Imaging Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990) Phantoms, Radiographic,Phantoms, Radiologic,Radiographic Phantoms,Radiologic Phantoms,Phantom, Radiographic,Phantom, Radiologic,Radiographic Phantom,Radiologic Phantom,Imaging Phantom,Imaging Phantoms,Phantom, Imaging
D019187 Cadmium Compounds Inorganic compounds that contain cadmium as an integral part of the molecule. Compounds, Cadmium

Related Publications

Polad M Shikhaliev
September 2019, Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment,
Polad M Shikhaliev
January 2009, IEEE transactions on nuclear science,
Polad M Shikhaliev
January 2012, European radiology,
Polad M Shikhaliev
March 2015, IEEE transactions on medical imaging,
Polad M Shikhaliev
January 2018, Journal of medical imaging (Bellingham, Wash.),
Polad M Shikhaliev
March 2017, Radiological physics and technology,
Polad M Shikhaliev
August 2016, Proceedings of SPIE--the International Society for Optical Engineering,
Copied contents to your clipboard!