Interstitial cells of Cajal generate spontaneous transient depolarizations in the rat gastric fundus. 2009

Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
Department of Physiology, Nagoya City University Medical School, Mizuho-ku, Nagoya, Japan. y.kito@med.nagoya-cu.ac.jp

Intracellular recordings were made from isolated circular muscle bundles of rat gastric fundus. The majority of cells generated an ongoing discharge of electrical activity that were <or=10 mV in amplitude (unitary potentials). A second pattern of electrical activity was recorded in less than 1% of all impalements. This electrical activity was characterized by high frequency, large amplitude spontaneous transient depolarizations (STDs) with a maximum rate of rise (dV/dt(max)) of 0.5 V/s. Injection of the fluorescent dye propidium iodide into cells and double labeling with an antibody against the Kit receptor revealed that unitary potentials were recorded from circular smooth muscle cells (CSMC), whereas STDs were generated by intramuscular interstitial cells of Cajal (ICC-IM). Sustained injection periods (>15 min) resulted in the spread of dye between CSMC, between ICC-IM, and between CSMC and ICC-IM. Two types of STDs were observed, regularly occurring continuous STDs and irregular noisy bursting STDs. The amplitude of STDs varied between the two types of STDs. Single units summed to develop STDs with a maximum amplitude of 30 mV. Sodium nitroprusside (3 microM) induced membrane hyperpolarization and abolished unitary potentials generated by CSMC. In contrast, the amplitude of STDs generated by ICC-IM was increased with membrane hyperpolarization. Hyperpolarization induced by pinacidil (10 microM) also increased the amplitude of STDs and enhanced dV/dt(max). These observations indicate that STDs generated in ICC-IM spread passively to the adjacent CSMC to evoke the discharge of unitary potentials in the gastric fundus.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008839 Microelectrodes Electrodes with an extremely small tip, used in a voltage clamp or other apparatus to stimulate or record bioelectric potentials of single cells intracellularly or extracellularly. (Dorland, 28th ed) Electrodes, Miniaturized,Electrode, Miniaturized,Microelectrode,Miniaturized Electrode,Miniaturized Electrodes
D009599 Nitroprusside A powerful vasodilator used in emergencies to lower blood pressure or to improve cardiac function. It is also an indicator for free sulfhydryl groups in proteins. Nitroferricyanide,Sodium Nitroprusside,Cyanonitrosylferrate,Ketostix,Naniprus,Nipride,Nipruton,Nitriate,Nitropress,Nitroprussiat Fides,Nitroprusside, Disodium Salt,Nitroprusside, Disodium Salt, Dihydrate,Disodium Salt Nitroprusside,Nitroprusside, Sodium
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D011419 Propidium Quaternary ammonium analog of ethidium; an intercalating dye with a specific affinity to certain forms of DNA and, used as diiodide, to separate them in density gradients; also forms fluorescent complexes with cholinesterase which it inhibits. Propidium Diiodide,Propidium Iodide,Diiodide, Propidium,Iodide, Propidium
D002450 Cell Communication Any of several ways in which living cells of an organism communicate with one another, whether by direct contact between cells or by means of chemical signals carried by neurotransmitter substances, hormones, and cyclic AMP. Cell Interaction,Cell-to-Cell Interaction,Cell Communications,Cell Interactions,Cell to Cell Interaction,Cell-to-Cell Interactions,Communication, Cell,Communications, Cell,Interaction, Cell,Interaction, Cell-to-Cell,Interactions, Cell,Interactions, Cell-to-Cell
D005260 Female Females
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic

Related Publications

Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
June 2003, BMC gastroenterology,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
July 1998, Nature medicine,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
May 2018, The Journal of physiology,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
July 1999, The Journal of physiology,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
April 2014, Journal of neurogastroenterology and motility,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
January 2008, Neurogastroenterology and motility,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
November 2002, Gastroenterology,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
August 2004, The Journal of physiology,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
October 2022, The Journal of physiology,
Yoshihiko Kito, and Kenton M Sanders, and Sean M Ward, and Hikaru Suzuki
June 1989, Journal of the autonomic nervous system,
Copied contents to your clipboard!