Effects of dietary protein and bacterial lipopolysaccharide infusion on nitrogen metabolism and hormonal responses of growing beef steers. 2009

J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
Department of Animal and Range Sciences, New Mexico State University, Las Cruces 88003, USA.

Purified lipopolysaccharide (LPS) infusion in cattle induces clinical and metabolic responses similar to gram-negative bacterial infection. Effects of LPS and dietary protein on rectal temperature, serum hormones, haptoglobin, plasma urea N and AA, and N balance were evaluated in 24 steers (250 +/- 2.8 kg of BW). Treatments were a 2 x 3 factorial of LPS (0 vs. 1.5 microg/kg of BW; -LPS vs. +LPS) and diets containing (DM basis) 1) 14.5% CP, 11.6% ruminally degradable protein (RDP), and 2.9% ruminally undegradable protein (RUP; CP14.5CON); 2) 16.3% CP, 13.4% RDP, and 2.9% RUP (CP16RDP); and 3) 16.1% CP, 11.2% RDP, and 4.9% RUP (CP16RUP). Diet RDP and RUP were altered using casein, fish meal, and corn gluten meal. Steers were adapted to diets (1.1 Mcal/kg of NE(g); DM fed at 1.8% BW) for 14 d and were infused (intravenously 1 mL/min) with LPS (in 100 mL of saline) on d 15. Rectal temperature and serum cortisol, prolactin, haptoglobin, and insulin increased, glucose initially increased and then declined, and serum thyroxine and triiodothyronine decreased for +LPS vs. -LPS steers (LPS x hour; P < 0.01). Serum IGF-I was less (P < 0.01) for +LPS vs. -LPS steers. Plasma urea N increased in response to LPS (LPS x hour; P = 0.02) and was greater for +LPS steers fed CP16RDP and CP16RUP vs. CP14.5CON, but greater in -LPS steers fed CP16RUP vs. CP16RDP and CP14.5CON (LPS x diet; P = 0.04). Plasma Met, Thr, Leu, Ile, Phe, Trp, Gly, Ser, Asn, and Tyr decreased, and plasma Ala increased in response to LPS (LPS x hour; P < 0.01). Plasma Orn initially increased and then decreased in +LPS vs. -LPS steers (LPS x hour; P < 0.01). No LPS x diet interactions (P > or = 0.15) occurred for DM, OM, NDF and N intake, fecal excretion, or apparent digestibility. Dietary DM, OM, NDF, and N intake, and retained N were less (P < 0.01) for +LPS than -LPS steers. Total N intake, apparent N digestibility, and retained N were greater (P < or = 0.05) for steers fed CP16RDP and CP16RUP vs. CP14.5CON. An LPS x diet interaction (P = 0.05) occurred for N retention (% N intake) because N retention was less for +LPS than -LPS steers when fed CP14.5CON, but not different between +LPS and -LPS steers when fed CP16RDP and CP16RUP. These results demonstrate that LPS infusion alters serum hormones, plasma AA, and N balance in cattle and imply that growing steers exposed to LPS may require greater dietary protein concentrations to account for altered intake and metabolic AA demand.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D009584 Nitrogen An element with the atomic symbol N, atomic number 7, and atomic weight [14.00643; 14.00728]. Nitrogen exists as a diatomic gas and makes up about 78% of the earth's atmosphere by volume. It is a constituent of proteins and nucleic acids and found in all living cells.
D011388 Prolactin A lactogenic hormone secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). It is a polypeptide of approximately 23 kD. Besides its major action on lactation, in some species prolactin exerts effects on reproduction, maternal behavior, fat metabolism, immunomodulation and osmoregulation. Prolactin receptors are present in the mammary gland, hypothalamus, liver, ovary, testis, and prostate. Lactogenic Hormone, Pituitary,Mammotropic Hormone, Pituitary,Mammotropin,PRL (Prolactin),Hormone, Pituitary Lactogenic,Hormone, Pituitary Mammotropic,Pituitary Lactogenic Hormone,Pituitary Mammotropic Hormone
D001786 Blood Glucose Glucose in blood. Blood Sugar,Glucose, Blood,Sugar, Blood
D001806 Blood Urea Nitrogen The urea concentration of the blood stated in terms of nitrogen content. Serum (plasma) urea nitrogen is approximately 12% higher than blood urea nitrogen concentration because of the greater protein content of red blood cells. Increases in blood or serum urea nitrogen are referred to as azotemia and may have prerenal, renal, or postrenal causes. (From Saunders Dictionary & Encyclopedia of Laboratory Medicine and Technology, 1984) BUN,Nitrogen, Blood Urea,Urea Nitrogen, Blood
D001831 Body Temperature The measure of the level of heat of a human or animal. Organ Temperature,Body Temperatures,Organ Temperatures,Temperature, Body,Temperature, Organ,Temperatures, Body,Temperatures, Organ
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004044 Dietary Proteins Proteins obtained from foods. They are the main source of the ESSENTIAL AMINO ACIDS. Proteins, Dietary,Dietary Protein,Protein, Dietary

Related Publications

J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
January 2000, Journal of animal science,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
February 2001, Journal of animal science,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
March 1992, Journal of animal science,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
December 2000, Journal of animal science,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
July 1992, Journal of animal science,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
May 2023, Journal of the science of food and agriculture,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
June 2010, Journal of animal physiology and animal nutrition,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
June 1999, The British journal of nutrition,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
May 1976, Journal of animal science,
J W Waggoner, and C A Löest, and J L Turner, and C P Mathis, and D M Hallford
May 1991, Journal of animal science,
Copied contents to your clipboard!