Role of oxygen free radicals in retinal damage associated with experimental uveitis. 1990

N A Rao
Doheny Eye Institute, Los Angeles, California.

It is known that the visual loss in severe uveitis is due primarily to retinal tissue damage. In order to test the hypothesis that this damage may result from oxygen free radical-induced peroxidation of retinal membrane lipids, the generation of oxygen metabolites at the site of intraocular inflammation was investigated in an animal model of uveitis induced by retinal S-antigen. The effect of these metabolites on the initiation of retinal damage was characterized by histochemical, biochemical, morphologic, and morphometric methods. Light and electron microscopic studies at the early stage of the inflammation disclosed disorganization, degeneration, and necrosis of the photoreceptors and other retinal cells. Novel histochemical procedures demonstrated formation of superoxide and hydrogen peroxide at the site of uveoretinitis. Chemiluminescence measurements on uveoretinal tissue from these experimental animals revealed generation of superoxide anion and hydroxyl radicals. During the early phase of the uveoretinitis, concomitant with generation of the oxygen metabolites, there was peroxidation of retinal membrane lipids. The peroxidation products consisted of CD, MDA, hydroperoxides, and others. Associated with these changes was a selective depletion of the PUFA 22:6, decrease of which in the retinal composition has been shown to affect visual function. The morphologic and biochemical investigations clearly indicate that oxygen free radicals are generated at the site of uveoretinitis and that the retinal damage is mediated by peroxidation of lipids that are present in the retinal cell membranes. It would thus seem logical that such intraocular inflammation and the resultant retinal damage could be suppressed by antioxidant enzymes and oxygen free radical scavengers. These studies provide for the first time clear indication for developing new therapeutic agents that possess oxygen free radical scavenging properties, for treatment of human uveitis.

UI MeSH Term Description Entries
D008054 Lipid Peroxides Peroxides produced in the presence of a free radical by the oxidation of unsaturated fatty acids in the cell in the presence of molecular oxygen. The formation of lipid peroxides results in the destruction of the original lipid leading to the loss of integrity of the membranes. They therefore cause a variety of toxic effects in vivo and their formation is considered a pathological process in biological systems. Their formation can be inhibited by antioxidants, such as vitamin E, structural separation or low oxygen tension. Fatty Acid Hydroperoxide,Lipid Peroxide,Lipoperoxide,Fatty Acid Hydroperoxides,Lipid Hydroperoxide,Lipoperoxides,Acid Hydroperoxide, Fatty,Acid Hydroperoxides, Fatty,Hydroperoxide, Fatty Acid,Hydroperoxide, Lipid,Hydroperoxides, Fatty Acid,Peroxide, Lipid,Peroxides, Lipid
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D011917 Rats, Inbred Lew An inbred strain of rat that is used in BIOMEDICAL RESEARCH. Rats, Inbred Lewis,Rats, Lew,Inbred Lew Rat,Inbred Lew Rats,Inbred Lewis Rats,Lew Rat,Lew Rat, Inbred,Lew Rats,Lew Rats, Inbred,Lewis Rats, Inbred,Rat, Inbred Lew,Rat, Lew
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D012164 Retinal Diseases Diseases involving the RETINA. Disease, Retinal,Diseases, Retinal,Retinal Disease
D002829 Choroid The thin, highly vascular membrane covering most of the posterior of the eye between the RETINA and SCLERA. Choriocapillaris,Haller Layer,Haller's Layer,Sattler Layer,Sattler's Layer,Choroids
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D005609 Free Radicals Highly reactive molecules with an unsatisfied electron valence pair. Free radicals are produced in both normal and pathological processes. Free radicals include reactive oxygen and nitrogen species (RONS). They are proven or suspected agents of tissue damage in a wide variety of circumstances including radiation, damage from environment chemicals, and aging. Natural and pharmacological prevention of free radical damage is being actively investigated. Free Radical
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

N A Rao
February 2004, Biochemical pharmacology,
N A Rao
January 2002, Journal of basic and clinical physiology and pharmacology,
N A Rao
September 2001, Experimental gerontology,
N A Rao
February 1991, Cytotechnology,
N A Rao
January 2001, Annales Universitatis Mariae Curie-Sklodowska. Sectio D: Medicina,
Copied contents to your clipboard!