Phrenic motoneuron discharge patterns during hypoxia-induced short-term potentiation in rats. 2009

Kun-Ze Lee, and Paul J Reier, and David D Fuller
Department of Physical Therapy, College of Public Health and Health Professions, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610, USA. kzlee@ufl.edu

Hypoxia-induced short-term potentiation (STP) of respiratory motor output is manifested by a progressive increase in activity after the acute hypoxic response and a gradual decrease in activity on termination of hypoxia. We hypothesized that STP would be differentially expressed between physiologically defined phrenic motoneurons (PhrMNs). Phrenic nerve "single fiber" recordings were used to characterize PhrMN discharge in anesthetized, vagotomized and ventilated rats. PhrMNs were classified as early (Early-I) or late inspiratory (Late-I) according to burst onset relative to the contralateral phrenic neurogram during normocapnic baseline conditions. During hypoxia (F(I)O(2) = 0.12-0.14, 3 min), both Early-I and Late-I PhrMNs abruptly increased discharge frequency. Both cell types also showed a progressive increase in frequency over the remainder of hypoxia. However, Early-I PhrMNs showed reduced overall discharge duration and total spikes/breath during hypoxia, whereas Late-I PhrMNs maintained constant discharge duration and therefore increased the number of spikes/breath. A population of previously inactive (i.e., silent) PhrMNs was recruited 48 +/- 8 s after hypoxia onset. These PhrMNs had a Late-I onset, and the majority (8/9) ceased bursting promptly on termination of hypoxia. In contrast, both Early-I and Late-I PhrMNs showed post-hypoxia STP as reflected by greater discharge frequencies and spikes/breath during the post-hypoxic period (P < 0.01 vs. baseline). We conclude that the expression of phrenic STP during hypoxia reflects increased activity in previously active Early-I and Late-I PhrMNs and recruitment of silent PhrMNs. post-hypoxia STP primarily reflects persistent increases in the discharge of PhrMNs, which were active before hypoxia.

UI MeSH Term Description Entries
D008297 Male Males
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D010791 Phrenic Nerve The motor nerve of the diaphragm. The phrenic nerve fibers originate in the cervical spinal column (mostly C4) and travel through the cervical plexus to the diaphragm. Nerve, Phrenic,Nerves, Phrenic,Phrenic Nerves
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000860 Hypoxia Sub-optimal OXYGEN levels in the ambient air of living organisms. Anoxia,Oxygen Deficiency,Anoxemia,Deficiency, Oxygen,Hypoxemia,Deficiencies, Oxygen,Oxygen Deficiencies

Related Publications

Kun-Ze Lee, and Paul J Reier, and David D Fuller
November 1996, Journal of applied physiology (Bethesda, Md. : 1985),
Kun-Ze Lee, and Paul J Reier, and David D Fuller
October 2011, Respiratory physiology & neurobiology,
Kun-Ze Lee, and Paul J Reier, and David D Fuller
October 2012, Journal of neurophysiology,
Kun-Ze Lee, and Paul J Reier, and David D Fuller
July 1993, Brain research. Developmental brain research,
Kun-Ze Lee, and Paul J Reier, and David D Fuller
July 1992, Neuroscience letters,
Kun-Ze Lee, and Paul J Reier, and David D Fuller
February 2008, The Journal of physiology,
Kun-Ze Lee, and Paul J Reier, and David D Fuller
August 1993, Respiration physiology,
Kun-Ze Lee, and Paul J Reier, and David D Fuller
March 2013, Annals of the New York Academy of Sciences,
Kun-Ze Lee, and Paul J Reier, and David D Fuller
June 1979, Journal of applied physiology: respiratory, environmental and exercise physiology,
Kun-Ze Lee, and Paul J Reier, and David D Fuller
August 2010, Respiratory physiology & neurobiology,
Copied contents to your clipboard!