Agrobacterium-mediated DNA transfer in sugar pine. 1990

C A Loopstra, and A M Stomp, and R R Sederoff
Institute of Forest Genetics, Pacific Southwest Forest Experiment Station, USDA Forest Service, Berkeley, CA 94701.

DNA transfer using Agrobacterium tumefaciens has been demonstrated in sugar pine, Pinus lambertiana Dougl. Shoots derived from cytokinin-treated cotyledons formed galls after inoculation with A. tumefaciens strains containing the plasmid pTiBo542. A selectable marker, neomycin phosphotransferase II, conferring resistance to kanamycin, was transferred into sugar pine using a binary armed vector system. Callus proliferated from the galls grew without hormones and in some cases, kanamycin-resistant callus could be cultured. Southern blots provided evidence of physical transfer of T-DNA and the nptII gene. Expression of the nptII gene under control of the nos promoter was demonstrated by neomycin phosphotransferase assays. Several aspects of DNA transfer were similar to those previously observed in angiosperms transformed by A. tumefaciens. This is the first evidence for DNA transfer by Agrobacterium in this species and the first physical evidence for transfer in any pine. These results bring us closer to genetic engineering in this commercially important genus of forest trees.

UI MeSH Term Description Entries
D010770 Phosphotransferases A rather large group of enzymes comprising not only those transferring phosphate but also diphosphate, nucleotidyl residues, and others. These have also been subdivided according to the acceptor group. (From Enzyme Nomenclature, 1992) EC 2.7. Kinases,Phosphotransferase,Phosphotransferases, ATP,Transphosphorylase,Transphosphorylases,Kinase,ATP Phosphotransferases
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D005819 Genetic Markers A phenotypically recognizable genetic trait which can be used to identify a genetic locus, a linkage group, or a recombination event. Chromosome Markers,DNA Markers,Markers, DNA,Markers, Genetic,Genetic Marker,Marker, Genetic,Chromosome Marker,DNA Marker,Marker, Chromosome,Marker, DNA,Markers, Chromosome
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D012231 Rhizobium A genus of gram-negative, aerobic, rod-shaped bacteria that activate PLANT ROOT NODULATION in leguminous plants. Members of this genus are nitrogen-fixing and common soil inhabitants.
D014162 Transfection The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES. Transfections

Related Publications

C A Loopstra, and A M Stomp, and R R Sederoff
September 2008, Nature biotechnology,
C A Loopstra, and A M Stomp, and R R Sederoff
November 1996, Plant cell reports,
C A Loopstra, and A M Stomp, and R R Sederoff
September 2008, Nature biotechnology,
C A Loopstra, and A M Stomp, and R R Sederoff
January 1988, Annual review of genetics,
C A Loopstra, and A M Stomp, and R R Sederoff
September 1993, Plant cell reports,
C A Loopstra, and A M Stomp, and R R Sederoff
January 1998, Genetic engineering,
C A Loopstra, and A M Stomp, and R R Sederoff
January 1993, Plant cell reports,
C A Loopstra, and A M Stomp, and R R Sederoff
February 2024, Planta,
C A Loopstra, and A M Stomp, and R R Sederoff
January 2005, Methods in molecular biology (Clifton, N.J.),
C A Loopstra, and A M Stomp, and R R Sederoff
June 1991, The Journal of general virology,
Copied contents to your clipboard!