Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. 2009

X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.

Differentiating cells can dedifferentiate to replace stem cells in aged or damaged tissues, but the underlying mechanisms are unknown. In the Drosophila testis, a cluster of stromal cells called the hub creates a niche by locally activating Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling in adjacent germline and somatic stem cells. Here, we establish a system to study spermatogonial dedifferentiation. Ectopically expressing the differentiation factor bag-of-marbles (Bam) removes germline stem cells from the niche. However, withdrawing ectopic Bam causes interconnected spermatogonia to fragment, move into the niche, exchange positions with resident somatic stem cells, and establish contact with the hub. Concomitantly, actin-based protrusions appear on subsets of spermatogonia, suggesting acquired motility. Furthermore, global downregulation of Jak-STAT signaling inhibits dedifferentiation, indicating that normal levels of pathway activation are required to promote movement of spermatogonia into the niche during dedifferentiation, where they outcompete somatic stem cells for niche occupancy.

UI MeSH Term Description Entries
D008297 Male Males
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013091 Spermatogenesis The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA. Spermatocytogenesis,Spermiogenesis
D013093 Spermatogonia Euploid male germ cells of an early stage of SPERMATOGENESIS, derived from prespermatogonia. With the onset of puberty, spermatogonia at the basement membrane of the seminiferous tubule proliferate by mitotic then meiotic divisions and give rise to the haploid SPERMATOCYTES. Spermatophores,Spermatogonias,Spermatophore
D013737 Testis The male gonad containing two functional parts: the SEMINIFEROUS TUBULES for the production and transport of male germ cells (SPERMATOGENESIS) and the interstitial compartment containing LEYDIG CELLS that produce ANDROGENS. Testicles,Testes,Testicle
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D050791 STAT Transcription Factors A family of transcription factors containing SH2 DOMAINS that are involved in CYTOKINE-mediated SIGNAL TRANSDUCTION. STAT transcription factors are recruited to the cytoplasmic region of CELL SURFACE RECEPTORS and are activated via PHOSPHORYLATION. Once activated they dimerize and translocate into the CELL NUCLEUS where they influence GENE expression. They play a role in regulating CELL GROWTH PROCESSES and CELL DIFFERENTIATION. STAT transcription factors are inhibited by SUPPRESSOR OF CYTOKINE SIGNALING PROTEINS and PROTEIN INHIBITORS OF ACTIVATED STAT. STAT (Signal Transducers and Activators of Transcription) Proteins,Transcription Factors, STAT
D053612 Janus Kinases A family of intracellular tyrosine kinases that participate in the signaling cascade of cytokines by associating with specific CYTOKINE RECEPTORS. They act upon STAT TRANSCRIPTION FACTORS in signaling pathway referred to as the JAK/STAT pathway. The name Janus kinase refers to the fact the proteins have two phosphate-transferring domains. Janus Kinase,JAK Kinases,Kinase, Janus,Kinases, JAK,Kinases, Janus
D055153 Stem Cell Niche A particular zone of tissue composed of a specialized microenvironment where stem cells are retained in a undifferentiated, self-renewable state. Stem Cell Microenvironment,Cell Microenvironment, Stem,Cell Microenvironments, Stem,Cell Niche, Stem,Cell Niches, Stem,Microenvironment, Stem Cell,Microenvironments, Stem Cell,Niche, Stem Cell,Niches, Stem Cell,Stem Cell Microenvironments,Stem Cell Niches

Related Publications

X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
January 2008, Cell stem cell,
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
August 2008, Nature,
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
May 2014, Cell reports,
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
August 2012, Development (Cambridge, England),
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
September 2018, Development (Cambridge, England),
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
July 2011, Development (Cambridge, England),
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
August 2012, Developmental biology,
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
January 2017, Methods in molecular biology (Clifton, N.J.),
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
January 2023, Methods in molecular biology (Clifton, N.J.),
X Rebecca Sheng, and Crista M Brawley, and Erika L Matunis
July 2015, Nature,
Copied contents to your clipboard!