D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. 1990

M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
Department of Pharmacology, School of Medicine, University of Auckland, New Zealand.

Rats injected with haloperidol, which binds to both D2 dopamine and sigma receptors or the specific D2 dopamine receptor antagonist YM 09151-2, but not the specific D1 dopamine receptor antagonist SCH 23390, showed induction of c-fos protein and c-fos-related antigens in striatal neurons. This effect of haloperidol and YM 09151-2 was inhibited by the N-methyl-D-aspartate antagonist MK801 but was not affected by 1,3-di-O-tolylguanidine, a selective sigma receptor ligand. Two different antisera were used to detect c-fos protein: one was specific for c-fos protein itself while the other recognized c-fos protein as well as c-fos protein-related antigens. In time-course immunocytochemical studies, the c-fos protein was induced maximally by 1 h and had returned to baseline by 24 h. However, c-fos protein-related antigens were induced maximally after 2 h and remained elevated for at least three days after haloperidol injection. Furthermore, the c-fos protein-specific antiserum detected two to three times fewer immunopositive striatal cells than the antiserum which detected both c-fos protein-related antigens and c-fos protein in haloperidol-treated rats. This result suggests that some striatal neurons express c-fos protein-related antigens but not c-fos protein after haloperidol injection. In some striatal sections from haloperidol-injected rats immunostained with the antiserum which recognizes both c-fos protein and c-fos protein-related antigens, there were large areas of immunopositive neurons interspersed with "areas" of striatum devoid of immunostaining. The implications of these results for theories concerning the biochemical mechanism of action of haloperidol are discussed.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011957 Receptors, Opioid Cell membrane proteins that bind opioids and trigger intracellular changes which influence the behavior of cells. The endogenous ligands for opioid receptors in mammals include three families of peptides, the enkephalins, endorphins, and dynorphins. The receptor classes include mu, delta, and kappa receptors. Sigma receptors bind several psychoactive substances, including certain opioids, but their endogenous ligands are not known. Endorphin Receptors,Enkephalin Receptors,Narcotic Receptors,Opioid Receptors,Receptors, Endorphin,Receptors, Enkephalin,Receptors, Narcotic,Receptors, Opiate,Endorphin Receptor,Enkephalin Receptor,Normorphine Receptors,Opiate Receptor,Opiate Receptors,Opioid Receptor,Receptors, Normorphine,Receptors, beta-Endorphin,beta-Endorphin Receptor,Receptor, Endorphin,Receptor, Enkephalin,Receptor, Opiate,Receptor, Opioid,Receptor, beta-Endorphin,Receptors, beta Endorphin,beta Endorphin Receptor,beta-Endorphin Receptors
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D006146 Guanidines A family of iminourea derivatives. The parent compound has been isolated from mushrooms, corn germ, rice hulls, mussels, earthworms, and turnip juice. Derivatives may have antiviral and antifungal properties.
D006220 Haloperidol A phenyl-piperidinyl-butyrophenone that is used primarily to treat SCHIZOPHRENIA and other PSYCHOSES. It is also used in schizoaffective disorder, DELUSIONAL DISORDERS, ballism, and TOURETTE SYNDROME (a drug of choice) and occasionally as adjunctive therapy in INTELLECTUAL DISABILITY and the chorea of HUNTINGTON DISEASE. It is a potent antiemetic and is used in the treatment of intractable HICCUPS. (From AMA Drug Evaluations Annual, 1994, p279) Haldol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001549 Benzamides BENZOIC ACID amides.
D001552 Benzazepines Compounds with BENZENE fused to AZEPINES.

Related Publications

M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
September 2004, Journal of neurochemistry,
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
January 1992, Brain research bulletin,
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
September 1993, Brain research,
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
August 1993, Proceedings of the National Academy of Sciences of the United States of America,
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
July 1991, Brain research. Molecular brain research,
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
May 2007, Trends in neurosciences,
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
March 1988, Neuroscience letters,
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
February 1997, Journal of neuroscience research,
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
July 1996, Synapse (New York, N.Y.),
M Dragunow, and G S Robertson, and R L Faull, and H A Robertson, and K Jansen
August 1994, European journal of pharmacology,
Copied contents to your clipboard!