Altered pituitary growth hormone (GH) regulation in streptozotocin-diabetic rats: a combined defect of hypothalamic somatostatin and GH-releasing factor. 1990

D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
Department of Medicine, State University of New York, Stony Brook 11794.

Diabetes mellitus in the rat is associated with loss of pulsatile GH secretion. An interplay between hypothalamic GH-releasing factor (GRF) and inhibitory factor [somatostatin (SRIF)] secretion is thought to account for episodic pituitary GH release. An increase in SRIF tone/action or a decrease in GRF release/response in diabetic rats could account for the suppressed GH levels. Pituitaries from streptozotocin-diabetic rats contained less GH than controls (15.9 +/- 2.5 vs. 29.5 +/- 4.6 micrograms/mg; P less than 0.05) despite normal somatotrope representation, as demonstrated using immunofluorescence studies. Basal GH secretion from monolayer culture of dispersed anterior pituitary (AP) cells from diabetic rats was proportionately decreased (150 +/- 10 vs. 103 +/- 10 ng/10(5) cells; P less than 0.005). GRF (10(-11)-10(-8) M)-induced release of GH from AP cells was decreased in diabetic rats (maximum response to 10(-8) M GRF, 401 +/- 60 vs. 618 +/- 41 ng/10(5) cells; P less than 0.01); however, sensitivity to GRF was unchanged (EC50, 79 +/- 41 vs. 128 +/- 67 pM). By contrast, SRIF (10(-7)-10(-10)-induced inhibition of GRF (10(-8) M)-mediated GH release was impaired in AP cells of diabetic rats compared to that in controls (IC50, 112 +/- 33 vs. 55 +/- 31 pM; P less than 0.05) associated with a decrease in AP plasma membrane SRIF receptor concentration (63.4 +/- 15.6 vs. 160.3 +/- 13.7 fmol/mg protein; P less than 0.05), with no change in affinity. These findings are consistent with chronic exposure to increased hypothalamic SRIF influence. GH synthesis has been shown to be independent of SRIF regulation; however, insulin-like growth factor-I and GRF inhibit and stimulate GH synthesis, respectively. In diabetic rats insulin-like growth factor-I levels were decreased, appropriate to low GH status, in serum (290 +/- 66 vs. 1662 +/- 92 ng/ml; P less than 0.001) and hypothalamus (6.8 +/- 1.0 vs. 13.0 +/- 0.4 pg/mg wet wt; P less than 0.001) and, thus, did not seem to account for the low AP GH content. Hypothalamic GRF content in diabetic rats (1.11 +/- 0.10 ng/hypothalamus) did not differ from that in controls (1.16 +/- 0.17 ng/hypothalamus). GRF mRNA levels, however, were reduced by 80% in diabetic rats compared to controls. Taken together these data support a combined role for decreased hypothalamic GRF and increased SRIF in mediating alterations of GH synthesis and secretion in streptozotocin-induced diabetes.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D008297 Male Males
D009479 Neuropeptides Peptides released by NEURONS as intercellular messengers. Many neuropeptides are also hormones released by non-neuronal cells. Neuropeptide
D010903 Pituitary Gland, Anterior The anterior glandular lobe of the pituitary gland, also known as the adenohypophysis. It secretes the ADENOHYPOPHYSEAL HORMONES that regulate vital functions such as GROWTH; METABOLISM; and REPRODUCTION. Adenohypophysis,Anterior Lobe of Pituitary,Anterior Pituitary Gland,Lobus Anterior,Pars Distalis of Pituitary,Adenohypophyses,Anterior Pituitary Glands,Anterior, Lobus,Anteriors, Lobus,Lobus Anteriors,Pituitary Anterior Lobe,Pituitary Glands, Anterior,Pituitary Pars Distalis
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003921 Diabetes Mellitus, Experimental Diabetes mellitus induced experimentally by administration of various diabetogenic agents or by PANCREATECTOMY. Alloxan Diabetes,Streptozocin Diabetes,Streptozotocin Diabetes,Experimental Diabetes Mellitus,Diabete, Streptozocin,Diabetes, Alloxan,Diabetes, Streptozocin,Diabetes, Streptozotocin,Streptozocin Diabete
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013004 Somatostatin A 14-amino acid peptide named for its ability to inhibit pituitary GROWTH HORMONE release, also called somatotropin release-inhibiting factor. It is expressed in the central and peripheral nervous systems, the gut, and other organs. SRIF can also inhibit the release of THYROID-STIMULATING HORMONE; PROLACTIN; INSULIN; and GLUCAGON besides acting as a neurotransmitter and neuromodulator. In a number of species including humans, there is an additional form of somatostatin, SRIF-28 with a 14-amino acid extension at the N-terminal. Cyclic Somatostatin,Somatostatin-14,Somatotropin Release-Inhibiting Hormone,SRIH-14,Somatofalk,Somatostatin, Cyclic,Somatotropin Release-Inhibiting Factor,Stilamin,Somatostatin 14,Somatotropin Release Inhibiting Factor,Somatotropin Release Inhibiting Hormone
D013006 Growth Hormone A polypeptide that is secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Growth hormone, also known as somatotropin, stimulates mitosis, cell differentiation and cell growth. Species-specific growth hormones have been synthesized. Growth Hormone, Recombinant,Pituitary Growth Hormone,Recombinant Growth Hormone,Somatotropin,Somatotropin, Recombinant,Growth Hormone, Pituitary,Growth Hormones Pituitary, Recombinant,Pituitary Growth Hormones, Recombinant,Recombinant Growth Hormones,Recombinant Pituitary Growth Hormones,Recombinant Somatotropins,Somatotropins, Recombinant,Growth Hormones, Recombinant,Recombinant Somatotropin
D013007 Growth Hormone-Releasing Hormone A peptide of 44 amino acids in most species that stimulates the release and synthesis of GROWTH HORMONE. GHRF (or GRF) is synthesized by neurons in the ARCUATE NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, GHRF stimulates GH release by the SOMATOTROPHS in the PITUITARY GLAND. Growth Hormone-Releasing Factor,Somatocrinin,Somatotropin-Releasing Factor 44,Somatotropin-Releasing Hormone,GHRH 1-44,GRF 1-44,Growth Hormone-Releasing Factor 44,Human Pancreatic Growth Hormone-Releasing Factor,Somatoliberin,hpGRF 44,Growth Hormone Releasing Factor,Growth Hormone Releasing Factor 44,Growth Hormone Releasing Hormone,Somatotropin Releasing Factor 44,Somatotropin Releasing Hormone

Related Publications

D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
December 1988, The Journal of endocrinology,
D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
October 1989, Canadian journal of physiology and pharmacology,
D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
January 1987, Endocrinology,
D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
May 1991, Neuroendocrinology,
D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
July 1992, The Journal of clinical investigation,
D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
May 1986, Endocrinology,
D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
January 1989, Endocrinology,
D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
May 1995, Brain research,
D Olchovsky, and J F Bruno, and T L Wood, and M C Gelato, and J W Leidy, and J M Gilbert, and M Berelowitz
May 1996, Fertility and sterility,
Copied contents to your clipboard!