Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes. 2009

Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
Department of Microbiology, Imperial College London, London, UK.

Lipoteichoic acid (LTA) is an important cell wall polymer in gram-positive bacteria and often consists a polyglycerolphosphate backbone chain that is linked to the membrane by a glycolipid. In Listeria monocytogenes this glycolipid is Gal-Glc-DAG or Gal-Ptd-6Glc-DAG. Using a bioinformatics approach, we have identified L. monocytogenes genes predicted to be involved in glycolipid (lmo2555 and lmo2554) and LTA backbone (lmo0644 and lmo0927) synthesis. LTA and glycolipid analysis of wild-type and mutant strains confirmed the function of Lmo2555 and Lmo2554 as glycosyltransferases required for the formation of Glc-DAG and Gal-Glc-DAG. Deletion of a third gene, lmo2553, located in the same operon resulted in the production of LTA with an altered structure. lmo0927 and lmo0644 encode proteins with high similarity to the staphylococcal LTA synthase LtaS, which is responsible for polyglycerolphosphate backbone synthesis. We show that both proteins are involved in LTA synthesis. Our data support a model whereby Lmo0644 acts as an LTA primase LtaP and transfers the initial glycerolphosphate onto the glycolipid anchor, and Lmo0927 functions as LTA synthase LtaS, which extends the glycerolphosphate backbone chain. Inactivation of LtaS leads to severe growth and cell division defects, underscoring the pivotal role of LTA in this gram-positive pathogen.

UI MeSH Term Description Entries
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008089 Listeria monocytogenes A species of gram-positive, rod-shaped bacteria widely distributed in nature. It has been isolated from sewage, soil, silage, and from feces of healthy animals and man. Infection with this bacterium leads to encephalitis, meningitis, endocarditis, and abortion.
D009876 Operon In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION. Operons
D002473 Cell Wall The outermost layer of a cell in most PLANTS; BACTERIA; FUNGI; and ALGAE. The cell wall is usually a rigid structure that lies external to the CELL MEMBRANE, and provides a protective barrier against physical or chemical agents. Cell Walls,Wall, Cell,Walls, Cell
D005994 Glycerophosphates Any salt or ester of glycerophosphoric acid. Glycerolphosphate,Glycerophosphate,Calcium Glycerophosphate,Glycerolphosphates,Glycerophosphate, Calcium
D006017 Glycolipids Any compound containing one or more monosaccharide residues bound by a glycosidic linkage to a hydrophobic moiety such as an acylglycerol (see GLYCERIDES), a sphingoid, a ceramide (CERAMIDES) (N-acylsphingoid) or a prenyl phosphate. (From IUPAC's webpage) Glycolipid
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass
D013682 Teichoic Acids Bacterial polysaccharides that are rich in phosphodiester linkages. They are the major components of the cell walls and membranes of many bacteria. Glycerol Teichoic Acid,Glycerol Teichoic Acids,Acid, Glycerol Teichoic,Acids, Glycerol Teichoic,Acids, Teichoic
D016695 Glycosyltransferases Enzymes that catalyze the transfer of glycosyl groups to an acceptor. Most often another carbohydrate molecule acts as an acceptor, but inorganic phosphate can also act as an acceptor, such as in the case of PHOSPHORYLASES. Some of the enzymes in this group also catalyze hydrolysis, which can be regarded as transfer of a glycosyl group from the donor to water. Subclasses include the HEXOSYLTRANSFERASES; PENTOSYLTRANSFERASES; SIALYLTRANSFERASES; and those transferring other glycosyl groups. EC 2.4. Glycosyltransferase,Glycoside Transferases,Transferases, Glycoside

Related Publications

Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
October 2014, The Journal of biological chemistry,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
November 1983, Journal of bacteriology,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
March 2007, Journal of bacteriology,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
January 1981, Journal of immunological methods,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
June 2011, FEMS microbiology letters,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
January 2011, Immunobiology,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
January 2002, Molecular microbiology,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
January 2009, Journal of bacteriology,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
August 1988, Zentralblatt fur Bakteriologie, Mikrobiologie, und Hygiene. Series A, Medical microbiology, infectious diseases, virology, parasitology,
Alexander J Webb, and Maria Karatsa-Dodgson, and Angelika Gründling
April 2012, The Journal of infectious diseases,
Copied contents to your clipboard!