Metabolic aspects of neonatal rat islet hypoxia tolerance. 2010

Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
Department of Physiology and Biochemistry of Nutrition, Max Rubner Institute, and Clinical Research Center, Innovation and Technology centre, Kiel, Germany.

Sensitivity of pancreatic islets to hypoxia is one of the most important of the obstacles responsible for their failure to survive within the recipients. The aim of this study was to compare the in vitro hypoxia tolerance of neonatal and adult rat islet cells and to study the glucose metabolism in these cells after exposure to hypoxia. Islet cells from both age categories were cultured in different hypoxic levels for 24 h and insulin secretion and some metabolites of glucose metabolism were analysed. Glucose-stimulated insulin secretion decreased dramatically in both cell preparations in response to the decrease in oxygen level. The reduction of insulin secretion was more detectable in adult cells and started at 5% O(2), while a significant reduction was obtained at 1% O(2) in neonatal cells. Moreover, basal insulin release of neonatal cells showed an adaptation to hypoxia after a 4-day culture in hypoxia. Intracellular pyruvate was higher in neonatal cells than in adult ones, while no difference in lactate level was observed between them. Similar results to that of pyruvate were observed for adenosine triphosphate (ATP) and the second messenger cyclic adenosine monophosphate (cAMP). The study reveals that neonatal rat islet cells are more hypoxia-tolerant than the adult ones. The most obvious metabolic observation was that both pyruvate and lactate were actively produced in neonatal cells, while adult cells depended mainly on lactate production as an end-product of glycolysis, indicating a more enhanced metabolic flexibility of neonatal cells to utilize the available oxygen and, at the same time, maintain metabolism anaerobically.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D010100 Oxygen An element with atomic symbol O, atomic number 8, and atomic weight [15.99903; 15.99977]. It is the most abundant element on earth and essential for respiration. Dioxygen,Oxygen-16,Oxygen 16
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006019 Glycolysis A metabolic process that converts GLUCOSE into two molecules of PYRUVIC ACID through a series of enzymatic reactions. Energy generated by this process is conserved in two molecules of ATP. Glycolysis is the universal catabolic pathway for glucose, free glucose, or glucose derived from complex CARBOHYDRATES, such as GLYCOGEN and STARCH. Embden-Meyerhof Pathway,Embden-Meyerhof-Parnas Pathway,Embden Meyerhof Parnas Pathway,Embden Meyerhof Pathway,Embden-Meyerhof Pathways,Pathway, Embden-Meyerhof,Pathway, Embden-Meyerhof-Parnas,Pathways, Embden-Meyerhof
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2

Related Publications

Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
April 1992, Transplantation proceedings,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
November 1959, Connecticut medicine,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
September 2000, Annals of neurology,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
April 1967, Monatsschrift fur Kinderheilkunde,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
January 1978, Surgical forum,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
April 2004, Journal of neurochemistry,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
November 1993, Transplantation,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
June 1993, Circulation,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
January 1986, Acta psychiatrica Scandinavica. Supplementum,
Ayman Hyder, and Christiane Laue, and Jürgen Schrezenmeir
July 1999, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology,
Copied contents to your clipboard!