Post-translational modification of apolipoprotein B by transglutaminases. 1990

E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
Laboratory of Cellular Development & Oncology, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892.

The major form of cross-link found in apolipoprotein B was identified as N1N12-bis-(gamma-glutamyl)spermine, a product known to be formed through the catalytic action of transglutaminases (EC 2.3.2.13). N1-(gamma-Glutamyl)spermine was present in a trace amount but epsilon-(gamma-glutamyl)lysine cross-links, which are formed during fibrin formation in plasma, were not detected. In the presence of catalytic amounts of plasma Factor XIIIa (a thrombin-dependent extracellular transglutaminase) or cellular transglutaminase (a cytosolic enzyme), apolipoprotein B and other plasma apolipoproteins (A-I, A-II and C) underwent covalently bridged polymerization and served as amine acceptor substrates. These results suggests that transglutaminases may participate in the covalent modification of apolipoproteins, either in the physiological state or during pathogenesis.

UI MeSH Term Description Entries
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D011503 Transglutaminases Transglutaminases catalyze cross-linking of proteins at a GLUTAMINE in one chain with LYSINE in another chain. They include keratinocyte transglutaminase (TGM1 or TGK), tissue transglutaminase (TGM2 or TGC), plasma transglutaminase involved with coagulation (FACTOR XIII and FACTOR XIIIa), hair follicle transglutaminase, and prostate transglutaminase. Although structures differ, they share an active site (YGQCW) and strict CALCIUM dependence. Glutaminyl-Peptide Gamma-Glutamyltransferases,Protein-Glutamine gamma-Glutamyltransferases,Transglutaminase,Gamma-Glutamyltransferases, Glutaminyl-Peptide,Glutaminyl Peptide Gamma Glutamyltransferases,Protein Glutamine gamma Glutamyltransferases,gamma-Glutamyltransferases, Protein-Glutamine
D011700 Putrescine A toxic diamine formed by putrefaction from the decarboxylation of arginine and ornithine. 1,4-Butanediamine,1,4-Diaminobutane,Tetramethylenediamine,1,4 Butanediamine,1,4 Diaminobutane
D002852 Chromatography, Ion Exchange Separation technique in which the stationary phase consists of ion exchange resins. The resins contain loosely held small ions that easily exchange places with other small ions of like charge present in solutions washed over the resins. Chromatography, Ion-Exchange,Ion-Exchange Chromatography,Chromatographies, Ion Exchange,Chromatographies, Ion-Exchange,Ion Exchange Chromatographies,Ion Exchange Chromatography,Ion-Exchange Chromatographies
D003432 Cross-Linking Reagents Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other. Bifunctional Reagent,Bifunctional Reagents,Cross Linking Reagent,Crosslinking Reagent,Cross Linking Reagents,Crosslinking Reagents,Linking Reagent, Cross,Linking Reagents, Cross,Reagent, Bifunctional,Reagent, Cross Linking,Reagent, Crosslinking,Reagents, Bifunctional,Reagents, Cross Linking,Reagents, Cross-Linking,Reagents, Crosslinking
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
April 1989, The Journal of biological chemistry,
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
March 1986, The Journal of biological chemistry,
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
December 2010, Toxicology,
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
October 1997, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
January 2010, Methods in molecular biology (Clifton, N.J.),
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
May 1998, The Proceedings of the Nutrition Society,
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
October 1997, The Journal of biological chemistry,
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
January 1988, Agents and actions. Supplements,
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
January 2015, Laboratory investigation; a journal of technical methods and pathology,
E Cocuzzi, and M Piacentini, and S Beninati, and S I Chung
June 2005, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!