Radial spoke protein 3 is a mammalian protein kinase A-anchoring protein that binds ERK1/2. 2009

Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.

Initially identified in Chlamydomonas, RSP3 (radial spoke protein 3) is 1 of more than 20 identified radial spoke structural components of motile cilia and is required for axonemal sliding and flagellar motility. The mammalian orthologs for this and other radial spoke proteins, however, remain to be characterized. We found mammalian RSP3 to bind to the MAPK ERK2 through a yeast two-hybrid screen designed to identify interacting proteins that have a higher affinity for the phosphorylated, active form of the protein kinase. Consistent with the screening result, the human homolog, RSPH3, interacts with and is a substrate for ERK1/2. Moreover, RSPH3 is a protein kinase A-anchoring protein (AKAP) that scaffolds the cAMP-dependent protein kinase holoenzyme. The binding of RSPH3 to the regulatory subunits of cAMP-dependent protein kinase, RIIalpha and RIIbeta, is regulated by ERK1/2 activity and phosphorylation. Here we describe an ERK1/2-interacting AKAP and suggest a mechanism by which cAMP-dependent protein kinase-AKAP binding can be modulated by the activity of other enzymes.

UI MeSH Term Description Entries
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D048052 Mitogen-Activated Protein Kinase 3 A 44-kDa extracellular signal-regulated MAP kinase that may play a role the initiation and regulation of MEIOSIS; MITOSIS; and postmitotic functions in differentiated cells. It phosphorylates a number of TRANSCRIPTION FACTORS; and MICROTUBULE-ASSOCIATED PROTEINS. Extracellular Signal-Regulated Kinase 1,ERK1 Kinase,MAPK3 Mitogen-Activated Protein Kinase,Meiosis-Activated Myelin Basic Protein Kinase p44(mpk),Microtubule-Associated Protein-2 Kinase,PSTkinase p44mpk,Protein-Serine-Threonine Kinase p44(mpk),p44 MAPK,Extracellular Signal Regulated Kinase 1,Kinase, ERK1,Kinase, Microtubule-Associated Protein-2,MAPK3 Mitogen Activated Protein Kinase,Microtubule Associated Protein 2 Kinase,Mitogen Activated Protein Kinase 3,p44mpk, PSTkinase
D054754 Cyclic AMP-Dependent Protein Kinase RIIalpha Subunit A type II cAMP-dependent protein kinase regulatory subunit that plays a role in confering CYCLIC AMP activation of protein kinase activity. It has a higher affinity for cAMP than that of the CYCLIC-AMP-DEPENDENT PROTEIN KINASE RIIBETA SUBUNIT. Binding of this subunit by A KINASE ANCHOR PROTEINS may play a role in the cellular localization of type II protein kinase A. Protein Kinase A, RII alpha Subunit,Cyclic-AMP-Dependent Protein Kinase RIIalpha Subunit,RII alpha, cAMP Protein Kinase,RIIalpha, cAMP Protein Kinase,Regulatory Subunit RIIalpha, Cyclic-AMP-Dependent Protein Kinase,cAMP Protein Kinase RIIalpha,cAMP-Dependent Protein Kinase type II-alpha Regulatory Subunit,cAMP-Dependent Protein Kinase, Type 2alpha-Regulatory Subunit,Cyclic AMP Dependent Protein Kinase RIIalpha Subunit,Regulatory Subunit RIIalpha, Cyclic AMP Dependent Protein Kinase,cAMP Dependent Protein Kinase type II alpha Regulatory Subunit,cAMP Dependent Protein Kinase, Type 2alpha Regulatory Subunit
D054758 A Kinase Anchor Proteins A structurally-diverse family of intracellular-signaling adaptor proteins that selectively tether specific protein kinase A subtypes to distinct subcellular sites. They play a role in focusing the PROTEIN KINASE A activity toward relevant substrates. Over fifty members of this family exist, most of which bind specifically to regulatory subunits of CYCLIC AMP-DEPENDENT PROTEIN KINASE TYPE II such as CAMP PROTEIN KINASE RIIALPHA or CAMP PROTEIN KINASE RIIBETA. A-Kinase Anchoring Protein,A-Kinase Anchoring Proteins,A-Kinase Anchor Proteins,Protein Kinase A Anchor Proteins,A Kinase Anchoring Protein,A Kinase Anchoring Proteins,Anchor Proteins, A-Kinase,Anchoring Protein, A-Kinase,Protein, A-Kinase Anchoring
D019950 Mitogen-Activated Protein Kinase 1 A proline-directed serine/threonine protein kinase which mediates signal transduction from the cell surface to the nucleus. Activation of the enzyme by phosphorylation leads to its translocation into the nucleus where it acts upon specific transcription factors. p40 MAPK and p41 MAPK are isoforms. Extracellular Signal-Regulated Kinase 2,MAP Kinase 2,Mitogen-Activated Protein Kinase 2,p42 MAP Kinase,p42 MAPK,p42(Mitogen-Activated Protein Kinase),MAPK1 Mitogen-Activated Protein Kinase,MAPK2 Mitogen-Activated Protein Kinase,p42(Mapk),p42(Mapk) Kinase,Extracellular Signal Regulated Kinase 2,MAP Kinase, p42,MAPK1 Mitogen Activated Protein Kinase,MAPK2 Mitogen Activated Protein Kinase,Mitogen Activated Protein Kinase 1,Mitogen Activated Protein Kinase 2
D020798 Two-Hybrid System Techniques Screening techniques first developed in yeast to identify genes encoding interacting proteins. Variations are used to evaluate interplay between proteins and other molecules. Two-hybrid techniques refer to analysis for protein-protein interactions, one-hybrid for DNA-protein interactions, three-hybrid interactions for RNA-protein interactions or ligand-based interactions. Reverse n-hybrid techniques refer to analysis for mutations or other small molecules that dissociate known interactions. One-Hybrid System Techniques,Reverse One-Hybrid System Techniques,Reverse Two-Hybrid System Techniques,Three-Hybrid System Techniques,Yeast Two-Hybrid Assay,Yeast Two-Hybrid System Techniques,One-Hybrid System Technics,Reverse Three-Hybrid System Techniques,Three-Hybrid System Technics,Tri-Hybrid System Techniques,Two-Hybrid Assay,Two-Hybrid Method,Two-Hybrid System Technics,Yeast One-Hybrid System Techniques,Yeast Three-Hybrid Assay,Yeast Three-Hybrid System,Yeast Three-Hybrid System Techniques,Yeast Two-Hybrid System,n-Hybrid System Techniques,Assay, Two-Hybrid,Assay, Yeast Three-Hybrid,Assay, Yeast Two-Hybrid,Assays, Two-Hybrid,Assays, Yeast Three-Hybrid,Assays, Yeast Two-Hybrid,Method, Two-Hybrid,Methods, Two-Hybrid,One Hybrid System Technics,One Hybrid System Techniques,One-Hybrid System Technic,One-Hybrid System Technique,Reverse One Hybrid System Techniques,Reverse Three Hybrid System Techniques,Reverse Two Hybrid System Techniques,System Technique, n-Hybrid,System Techniques, n-Hybrid,System, Yeast Three-Hybrid,System, Yeast Two-Hybrid,Systems, Yeast Three-Hybrid,Systems, Yeast Two-Hybrid,Technic, One-Hybrid System,Technic, Three-Hybrid System,Technic, Two-Hybrid System,Technics, One-Hybrid System,Technics, Three-Hybrid System,Technics, Two-Hybrid System,Technique, One-Hybrid System,Technique, Three-Hybrid System,Technique, Tri-Hybrid System,Technique, Two-Hybrid System,Technique, n-Hybrid System,Techniques, One-Hybrid System,Techniques, Three-Hybrid System,Techniques, Tri-Hybrid System,Techniques, Two-Hybrid System,Techniques, n-Hybrid System,Three Hybrid System Technics,Three Hybrid System Techniques,Three-Hybrid Assay, Yeast,Three-Hybrid Assays, Yeast,Three-Hybrid System Technic,Three-Hybrid System Technique,Three-Hybrid System, Yeast,Three-Hybrid Systems, Yeast,Tri Hybrid System Techniques,Tri-Hybrid System Technique,Two Hybrid Assay,Two Hybrid Method,Two Hybrid System Technics,Two Hybrid System Techniques,Two-Hybrid Assay, Yeast,Two-Hybrid Assays,Two-Hybrid Assays, Yeast,Two-Hybrid Methods,Two-Hybrid System Technic,Two-Hybrid System Technique,Two-Hybrid System, Yeast,Two-Hybrid Systems, Yeast,Yeast One Hybrid System Techniques,Yeast Three Hybrid Assay,Yeast Three Hybrid System,Yeast Three Hybrid System Techniques,Yeast Three-Hybrid Assays,Yeast Three-Hybrid Systems,Yeast Two Hybrid Assay,Yeast Two Hybrid System,Yeast Two Hybrid System Techniques,Yeast Two-Hybrid Assays,Yeast Two-Hybrid Systems,n Hybrid System Techniques,n-Hybrid System Technique

Related Publications

Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
April 2001, The Journal of cell biology,
Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
March 2008, Cell motility and the cytoskeleton,
Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
October 2015, Histochemistry and cell biology,
Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
December 2010, Reproduction in domestic animals = Zuchthygiene,
Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
November 2012, The Journal of cell biology,
Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
June 1996, Genes & development,
Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
November 2016, Scientific reports,
Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
February 2004, Eukaryotic cell,
Arif Jivan, and Svetlana Earnest, and Yu-Chi Juang, and Melanie H Cobb
November 2004, Human reproduction (Oxford, England),
Copied contents to your clipboard!