Aristapedioid: a gain of function, homeotic mutation in Drosophila melanogaster. 1990

B P Brunk, and P N Adler
Department of Biology, University of Virginia, Charlottesville 22901.

The isolation of gain of function mutations has allowed the identification of a number of genes which are important in the normal development of the organism. We report here the isolation and characterization of Aristapedioid, a gain of function mutation which causes a partial transformation of arista towards tarsus and the loss or decrease in size of the dorso-central and scutellar bristles. Aristapedioid is the result of a P element mediated inversion which juxtaposes unrelated DNA adjacent to Suppressor 2 of zeste, causing a gain of function mutation in that gene.

UI MeSH Term Description Entries
D007446 Chromosome Inversion An aberration in which a chromosomal segment is deleted and reinserted in the same place but turned 180 degrees from its original orientation, so that the gene sequence for the segment is reversed with respect to that of the rest of the chromosome. Inversion, Chromosome,Inversion, Chromosomal,Chromosomal Inversion,Chromosomal Inversions,Chromosome Inversions,Inversions, Chromosomal,Inversions, Chromosome
D008297 Male Males
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002871 Chromosome Banding Staining of bands, or chromosome segments, allowing the precise identification of individual chromosomes or parts of chromosomes. Applications include the determination of chromosome rearrangements in malformation syndromes and cancer, the chemistry of chromosome segments, chromosome changes during evolution, and, in conjunction with cell hybridization studies, chromosome mapping. Banding, Chromosome,Bandings, Chromosome,Chromosome Bandings
D002874 Chromosome Mapping Any method used for determining the location of and relative distances between genes on a chromosome. Gene Mapping,Linkage Mapping,Genome Mapping,Chromosome Mappings,Gene Mappings,Genome Mappings,Linkage Mappings,Mapping, Chromosome,Mapping, Gene,Mapping, Genome,Mapping, Linkage,Mappings, Chromosome,Mappings, Gene,Mappings, Genome,Mappings, Linkage
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004331 Drosophila melanogaster A species of fruit fly frequently used in genetics because of the large size of its chromosomes. D. melanogaster,Drosophila melanogasters,melanogaster, Drosophila
D005260 Female Females
D005799 Genes, Dominant Genes that influence the PHENOTYPE both in the homozygous and the heterozygous state. Conditions, Dominant Genetic,Dominant Genetic Conditions,Genetic Conditions, Dominant,Condition, Dominant Genetic,Dominant Gene,Dominant Genes,Dominant Genetic Condition,Gene, Dominant,Genetic Condition, Dominant

Related Publications

B P Brunk, and P N Adler
November 1948, Genetics,
B P Brunk, and P N Adler
August 1989, Biochemistry and cell biology = Biochimie et biologie cellulaire,
B P Brunk, and P N Adler
April 1977, Developmental biology,
B P Brunk, and P N Adler
December 2001, Genetical research,
B P Brunk, and P N Adler
May 1994, Science (New York, N.Y.),
B P Brunk, and P N Adler
September 1992, Behavior genetics,
B P Brunk, and P N Adler
January 1989, Genes & development,
Copied contents to your clipboard!