Endometriotic stromal cells lose the ability to regulate cell-survival signaling in endometrial epithelial cells in vitro. 2009

Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
Department of Obstetrics and Gynecology, Provincial Hospital Affiliated to Shandong University, 324 Jingwu Road, Jinan, Shandong 250021, People's Republic of China.

In normal endometrium, stromal factors regulate the growth of epithelial cells. However, epithelial cells in endometriotic lesions display increased proliferation and decreased apoptosis. This work tested the hypothesis that in endometriosis stromal cells lose the ability to regulate survival signaling and cell growth in epithelial cells. Primary normal, endometriotic eutopic and ectopic epithelial cells were cultured in the presence of medium conditioned by normal, eutopic and ectopic endometriotic endometrial stromal cells. Endometriotic epithelial cells showed higher Survivin expression than normal epithelial cells. Conditioned medium (CM) from normal or eutopic endometriotic stromal cells significantly inhibited the Survivin expression and AKt phosphorylation in normal or eutopic endometriotic epithelial cells. However, CM from ectopic endometriotic stromal cells did not have an inhibitory effect on normal or ectopic endometriotic epithelial cells. Inhibition of AKt phosphorylation and Survivin expression in normal or eutopic endometriotic epithelial cells in the presence of stromal factors from normal or eutopic endometriotic stromal cells was enhanced by progesterone, whereas progesterone had little effect in the presence of stromal factors from ectopic endometriotic stromal cells. The inability of ectopic endometriotic stromal cells to regulated PI3K/AKt/Survivin signaling and mediate the progesterone response in endometriotic epithelial cells may facilitate epithelial cell proliferation in endometriosis and promote the survival of endometriotic lesions.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008869 Microtubule-Associated Proteins High molecular weight proteins found in the MICROTUBULES of the cytoskeletal system. Under certain conditions they are required for TUBULIN assembly into the microtubules and stabilize the assembled microtubules. Ensconsin,Epithelial MAP, 115 kDa,Epithelial Microtubule-Associate Protein, 115 kDa,MAP4,Microtubule Associated Protein,Microtubule Associated Protein 4,Microtubule Associated Protein 7,Microtubule-Associated Protein,Microtubule-Associated Protein 7,E-MAP-115,MAP1 Microtubule-Associated Protein,MAP2 Microtubule-Associated Protein,MAP3 Microtubule-Associated Protein,Microtubule Associated Proteins,Microtubule-Associated Protein 1,Microtubule-Associated Protein 2,Microtubule-Associated Protein 3,7, Microtubule-Associated Protein,Associated Protein, Microtubule,E MAP 115,Epithelial Microtubule Associate Protein, 115 kDa,MAP1 Microtubule Associated Protein,MAP2 Microtubule Associated Protein,MAP3 Microtubule Associated Protein,Microtubule Associated Protein 1,Microtubule Associated Protein 2,Microtubule Associated Protein 3,Microtubule-Associated Protein, MAP1,Microtubule-Associated Protein, MAP2,Microtubule-Associated Protein, MAP3,Protein 7, Microtubule-Associated,Protein, Microtubule Associated,Protein, Microtubule-Associated
D009025 Morpholines Tetrahydro-1,4-Oxazines,Tetrahydro 1,4 Oxazines
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002867 Chromones 1,4-Benzopyrones,Chromone,1,4 Benzopyrones
D004715 Endometriosis A condition in which functional endometrial tissue is present outside the UTERUS. It is often confined to the PELVIS involving the OVARY, the ligaments, cul-de-sac, and the uterovesical peritoneum. Endometrioma,Endometriomas,Endometrioses
D004717 Endometrium The mucous membrane lining of the uterine cavity that is hormonally responsive during the MENSTRUAL CYCLE and PREGNANCY. The endometrium undergoes cyclic changes that characterize MENSTRUATION. After successful FERTILIZATION, it serves to sustain the developing embryo. Endometria
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell

Related Publications

Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
May 2001, Human reproduction (Oxford, England),
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
April 2012, Journal of cellular biochemistry,
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
January 2018, Stem cells international,
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
June 2000, Molecular carcinogenesis,
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
January 2019, Reproductive sciences (Thousand Oaks, Calif.),
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
October 2011, Journal of molecular endocrinology,
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
June 2003, International journal of molecular medicine,
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
September 2019, Reproductive sciences (Thousand Oaks, Calif.),
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
May 2021, Molecular human reproduction,
Hui Zhang, and Mingjiang Li, and Xiaojing Zheng, and Ying Sun, and Zeqing Wen, and Xingbo Zhao
October 2013, Journal of cellular and molecular medicine,
Copied contents to your clipboard!