Aeromonas hydrophila AH-3 type III secretion system expression and regulatory network. 2009

Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, 08071 Barcelona, Spain.

The Aeromonas hydrophila type III secretion system (T3SS) has been shown to play a crucial role in this pathogen's interactions with its host. We previously described the genetic organization of the T3SS cluster and the existence of at least one effector, called AexT, in A. hydrophila strain AH-3. In this study, we analyzed the expression of the T3SS regulon by analyzing the activity of the aopN-aopD and aexT promoters (T3SS machinery components and effector, respectively) by means of two different techniques: promoterless gfp fusions and real-time PCR. The expression of the A. hydrophila AH-3 T3SS regulon was induced in response to several environmental factors, of which calcium depletion, a high magnesium concentration, and a high growth temperature were shown to be the major ones. Once the optimal conditions were established, we tested the expression of the T3SS regulon in the background of several virulence determinant knockouts of strain AH-3. The analysis of the data obtained from axsA and aopN mutants, both of which have been described to be T3SS regulators in other species, allowed us to corroborate their function as the major transcription regulator and valve of the T3SS, respectively, in Aeromonas hydrophila. We also demonstrated the existence of a complicated interconnection between the expression of the T3SS and several other different virulence factors, such as the lipopolysaccharide, the PhoPQ two-component system, the ahyIR quorum sensing system, and the enzymatic complex pyruvate deshydrogenase. To our knowledge, this is the first study of the A. hydrophila T3SS regulatory network.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006358 Hot Temperature Presence of warmth or heat or a temperature notably higher than an accustomed norm. Heat,Hot Temperatures,Temperature, Hot,Temperatures, Hot
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015964 Gene Expression Regulation, Bacterial Any of the processes by which cytoplasmic or intercellular factors influence the differential control of gene action in bacteria. Bacterial Gene Expression Regulation,Regulation of Gene Expression, Bacterial,Regulation, Gene Expression, Bacterial
D016980 Aeromonas hydrophila A species of gram-negative, facultatively anaerobic, rod-shaped bacteria that may be pathogenic for frogs, fish, and mammals, including man. In humans, cellulitis and diarrhea can result from infection with this organism.
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent
D055786 Gene Knockout Techniques Techniques to alter a gene sequence that result in an inactivated gene, or one in which the expression can be inactivated at a chosen time during development to study the loss of function of a gene. Gene Knock-Out Techniques,Gene Knock Out,Gene Knock Out Techniques,Gene Knockout,Gene Knock Outs,Gene Knock-Out Technique,Gene Knockout Technique,Gene Knockouts,Knock Out, Gene,Knock Outs, Gene,Knock-Out Technique, Gene,Knock-Out Techniques, Gene,Knockout Technique, Gene,Knockout Techniques, Gene,Knockout, Gene,Knockouts, Gene,Out, Gene Knock,Outs, Gene Knock,Technique, Gene Knock-Out,Technique, Gene Knockout,Techniques, Gene Knock-Out,Techniques, Gene Knockout

Related Publications

Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
March 2004, Infection and immunity,
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
January 2008, Microbial pathogenesis,
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
November 2004, Applied and environmental microbiology,
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
January 2016, Frontiers in microbiology,
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
February 2006, Journal of bacteriology,
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
October 2005, Infection and immunity,
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
May 2006, Microbiology (Reading, England),
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
September 2016, Genome announcements,
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
August 2012, The Journal of biological chemistry,
Silvia Vilches, and Natalia Jimenez, and Juan M Tomás, and Susana Merino
April 2011, PloS one,
Copied contents to your clipboard!