Functions of membrane binding domain of CTP:phosphocholine cytidylyltransferase in alveolar type II cells. 2010

Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, 555 University Avenue, Toronto, ON, M5G 1X8 Canada.

CTP:phosphocholine cytidylyltransferase (CCTalpha) plays a key role in the biosynthesis of surfactant phosphatidylcholine. In this study, we investigated the role of its membrane-binding (M) domain in modulating its structure, function, and cellular distribution. Multiple enhanced green fluorescent protein-CCTalpha constructs were generated to evaluate the subcellular distribution in A549 cells. The M domain targeted CCTalpha to the perinuclear (membrane-rich) region. Microinjections with glutathione-S-transferase fusion protein containing the M domain corroborated the perinuclear targeting. Deletion of the M domain or substitutions of the hydrophobic residues with arginine/serine in the VEEKS(267-277) motif of the M domain resulted in a nuclear appearance and indented nuclei. Membrane binding of CCTalpha decreased gradually as the number of positively charged arginine residues increased in the VEEKS motif. To identify whether membrane-protein interactions cause structural alterations in CCTalpha, we visualized the protein in the absence and presence of lipids by transmission electron microscopy. These studies revealed that CCTalpha forms a dimer-like complex that condenses upon binding to lipid vesicles, but not lipid monolayers. The influence of the M domain on CCTalpha activity was assessed in transgenic mice overexpressing the N-terminal catalytic domain (CCTalpha(1-239)), N-terminal catalytic plus M domain (CCTalpha(1-290)), or full-length CCTalpha(1-367) in fetal type II cells by using the surfactant protein C promoter. Only overexpression of CCTalpha(1-367) increased surfactant phosphatidylcholine synthesis. Thus, the M domain influences membrane binding, cellular distribution, and topology of CCTalpha, but the domain alone is not sufficient to confer CCT activity in alveolar type II cells in vivo.

UI MeSH Term Description Entries
D008055 Lipids A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed) Lipid
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D011650 Pulmonary Alveoli Small polyhedral outpouchings along the walls of the alveolar sacs, alveolar ducts and terminal bronchioles through the walls of which gas exchange between alveolar air and pulmonary capillary blood takes place. Alveoli, Pulmonary,Alveolus, Pulmonary,Pulmonary Alveolus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships
D017434 Protein Structure, Tertiary The level of protein structure in which combinations of secondary protein structures (ALPHA HELICES; BETA SHEETS; loop regions, and AMINO ACID MOTIFS) pack together to form folded shapes. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Tertiary Protein Structure,Protein Structures, Tertiary,Tertiary Protein Structures

Related Publications

Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
September 1996, Biochemistry,
Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
July 1994, The American journal of physiology,
Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
February 1994, The Journal of biological chemistry,
Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
July 2004, The Journal of biological chemistry,
Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
June 1993, The American journal of physiology,
Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
April 1994, Biochemistry,
Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
October 2008, The Journal of biological chemistry,
Ross Ridsdale, and Irene Tseu, and Jinxia Wang, and Martin Post
August 1995, The Journal of biological chemistry,
Copied contents to your clipboard!