DNA radiolysis by fast neutrons. 1990

M Spotheim-Maurizot, and M Charlier, and R Sabattier
Centre de Biophysique Moléculaire, CNRS, Orléans, France.

The effects of fast neutron irradiation on DNA were studied using DNA of the pBR322 plasmid (4362 base pairs), and the results compared to those obtained with 60Co gamma rays. Irradiation of the plasmid DNA in solution with a neutrons beam (p34+Be) of the CERI (CNRS Orléans) cyclotron (with a flat energy spectrum from 34 MeV to low energies) results in half the yield of single-strand breaks (ssb), and 1.5 times higher yield of double-strand breaks (dsb) for neutrons as compared to gamma-rays. Possible specificity of the neutron-induced breaks was examined: the scavenging of OH. radicals by 0.1 mol dm-3 ethanol inhibits all neutron-induced ssb, but only 85 per cent of the dsb. For gamma-irradiation, both ssb and dsb are completely inhibited in these conditions. These results suggest at least three different origins for neutron-induced dsb. The occurrence of around 30 per cent of dsb can be explained by a radical transfer mechanism (proposed by Siddiqi and Bothe (1987) for gamma-irradiation). Around 55 per cent of dsb may be due to the non-random distribution of radicals in high-density tracks of the secondary particles of neutrons, which results in a simultaneous attack of the two strands by OH. radicals. These first two processes are both OH.-mediated and thus are sensitive to ethanol. The direct effect of fast neutrons and their secondaries (recoil protons, alpha-particles and recoil nuclei) can account for the remaining 15 per cent of dsb, not inhibited by 0.1 mol dm-3 ethanol.

UI MeSH Term Description Entries
D009502 Neutrons Electrically neutral elementary particles found in all atomic nuclei except light hydrogen; the mass is equal to that of the proton and electron combined and they are unstable when isolated from the nucleus, undergoing beta decay. Slow, thermal, epithermal, and fast neutrons refer to the energy levels with which the neutrons are ejected from heavier nuclei during their decay. Neutron
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D003037 Cobalt Radioisotopes Unstable isotopes of cobalt that decay or disintegrate emitting radiation. Co atoms with atomic weights of 54-64, except 59, are radioactive cobalt isotopes. Radioisotopes, Cobalt
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D005214 Fast Neutrons Neutrons, the energy of which exceeds some arbitrary level, usually around one million electron volts. Fast Neutron,Neutron, Fast,Neutrons, Fast
D005720 Gamma Rays Penetrating, high-energy electromagnetic radiation emitted from atomic nuclei during NUCLEAR DECAY. The range of wavelengths of emitted radiation is between 0.1 - 100 pm which overlaps the shorter, more energetic hard X-RAYS wavelengths. The distinction between gamma rays and X-rays is based on their radiation source. Gamma Wave,Gamma Radiation,Nuclear X-Rays,Radiation, Gamma,X-Rays, Nuclear,Gamma Radiations,Gamma Ray,Gamma Waves,Nuclear X Rays,Nuclear X-Ray,Ray, Gamma,Wave, Gamma,Waves, Gamma,X Rays, Nuclear,X-Ray, Nuclear

Related Publications

M Spotheim-Maurizot, and M Charlier, and R Sabattier
June 1950, Nature,
M Spotheim-Maurizot, and M Charlier, and R Sabattier
October 1948, Nature,
M Spotheim-Maurizot, and M Charlier, and R Sabattier
January 1966, Radiobiologiia,
M Spotheim-Maurizot, and M Charlier, and R Sabattier
December 2014, Radiation research,
M Spotheim-Maurizot, and M Charlier, and R Sabattier
July 1985, The British journal of surgery,
M Spotheim-Maurizot, and M Charlier, and R Sabattier
February 1985, Nihon rinsho. Japanese journal of clinical medicine,
M Spotheim-Maurizot, and M Charlier, and R Sabattier
January 1979, International journal of radiation biology and related studies in physics, chemistry, and medicine,
M Spotheim-Maurizot, and M Charlier, and R Sabattier
June 1987, Radiation research,
M Spotheim-Maurizot, and M Charlier, and R Sabattier
January 1989, Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al],
M Spotheim-Maurizot, and M Charlier, and R Sabattier
February 1973, The British journal of radiology,
Copied contents to your clipboard!