Decreased transketolase activity contributes to impaired hippocampal neurogenesis induced by thiamine deficiency. 2009

Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
Department of Neurology, Zhongshan Hospital & Shanghai Medical College, Fudan University, Shanghai, China.

Thiamine deficiency (TD) impairs hippocampal neurogenesis. However, the mechanisms involved are not identified. In this work, TD mouse model was generated using a thiamine-depleted diet at two time points, TD9 and TD14 for 9 and 14 days of TD respectively. The activities of pyruvate dehydrogenase (PDH), alpha-ketoglutamate dehydrogenase (KGDH), glucose-6-phosphate dehydrogenase (G6PD), and transketolase (TK), as well as on the contents of NADP(+) and NADPH were determined in whole mouse brain, isolated cortex, and hippocampus of TD mice model. The effects of TK silencing on the growth and migratory ability of cultured hippocampal progenitor cells (HPC), as well as on neuritogenesis of hippocampal neurons were explored. The results showed that TD specifically reduced TK activity in both cortex and hippocampus, without significantly affecting the activities of PDH, KGDH, and G6PD in TD9 and TD14 groups. The level of whole brain and hippocampal NADPH in TD14 group were significantly lower than that of control group. TK silencing significantly inhibited the proliferation, growth, and migratory abilities of cultured HPC, without affecting neuritogenesis of cultured hippocampal neurons. Taken together, these results demonstrate that decreased TK activity leads to pentose-phosphate pathway dysfunction and contributes to impaired hippocampal neurogenesis induced by TD. TK and pentose-phosphate pathway may be considered new targets to investigate hippocampal neurogenesis.

UI MeSH Term Description Entries
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009249 NADP Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed) Coenzyme II,Nicotinamide-Adenine Dinucleotide Phosphate,Triphosphopyridine Nucleotide,NADPH,Dinucleotide Phosphate, Nicotinamide-Adenine,Nicotinamide Adenine Dinucleotide Phosphate,Nucleotide, Triphosphopyridine,Phosphate, Nicotinamide-Adenine Dinucleotide
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010427 Pentose Phosphate Pathway An oxidative decarboxylation process that converts GLUCOSE-6-PHOSPHATE to D-ribose-5-phosphate via 6-phosphogluconate. The pentose product is used in the biosynthesis of NUCLEIC ACIDS. The generated energy is stored in the form of NADPH. This pathway is prominent in tissues which are active in the synthesis of FATTY ACIDS and STEROIDS. Hexose Monophosphate Shunt,Pentose Phosphate Shunt,Pentose Shunt,Pentosephosphate Pathway,Pentose-Phosphate Pathway,Pentosephosphate Shunt,Hexose Monophosphate Shunts,Pathway, Pentose Phosphate,Pathway, Pentose-Phosphate,Pathway, Pentosephosphate,Pathways, Pentose Phosphate,Pathways, Pentose-Phosphate,Pathways, Pentosephosphate,Pentose Phosphate Pathways,Pentose Phosphate Shunts,Pentose Shunts,Pentose-Phosphate Pathways,Pentosephosphate Pathways,Pentosephosphate Shunts,Shunt, Hexose Monophosphate,Shunt, Pentose,Shunt, Pentose Phosphate,Shunt, Pentosephosphate,Shunts, Hexose Monophosphate,Shunts, Pentose,Shunts, Pentose Phosphate,Shunts, Pentosephosphate
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
January 2014, BioMed research international,
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
February 2008, Neurobiology of disease,
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
January 1964, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
April 1962, Annals of the New York Academy of Sciences,
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
February 1985, Zentralblatt fur Veterinarmedizin. Reihe A,
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
September 2018, Cell and tissue research,
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
March 2016, Brain research bulletin,
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
March 1975, Clinical chemistry,
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
September 1980, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Yanling Zhao, and Xiaoli Pan, and Jing Zhao, and Yang Wang, and Yun Peng, and Chunjiu Zhong
January 1969, Acta vitaminologica et enzymologica,
Copied contents to your clipboard!