Glucocorticoid dependency of surgical stress-induced FosB/DeltaFosB expression in the paraventricular and supraoptic nuclei of the rat hypothalamus. 2009

G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai, Japan. itoik@m.tains.tohoku.ac.jp

FosB is a member of the Fos family transcription factors. To determine whether FosB expression is regulated by glucocorticoids (GCs) in the hypothalamus, rats underwent sham adrenalectomy (sham-ADX) or bilateral ADX, and FosB/DeltaFosB (DeltaFosB, a truncated splice variant of FosB)-immunoreactivity (ir) was determined in the paraventricular nucleus (PVN) and supraoptic nucleus (SON). In the parvocellular division of the PVN (paPVN) and SON, FosB/DeltaFosB-immunoreactivity (ir) increased significantly following sham-ADX compared to naive rats, which was suppressed with either corticosterone (CORT) or dexamethasone (DEX). Following ADX, the increase in FosB/DeltaFosB-ir was much more prominent than that in the sham-ADX group, and the ADX-induced robust increase was suppressed by CORT or DEX, but not by aldosterone. Stressless removal of CORT from drinking water did not induce FosB/DeltaFosB-ir in either the PVN or SON, and thus the up-regulation of FosB/DeltaFosB-ir following ADX was dependent on the systemic stress associated with surgery. In the paPVN, the majority of corticotrophin-releasing hormone (CRH) neurones co-expressed FosB/DeltaFosB-ir following ADX, whereas, in the magnocellular division of the PVN, vasopressin (AVP) and oxytocin (OXT) neurones did not express FosB/DeltaFosB-ir. In the SON, approximately 40% of the AVP neurones co-expressed FosB/DeltaFosB-ir following ADX, but the OXT neurones were devoid of FosB/DeltaFosB-ir. In concert with these results obtained in vivo, DEX suppressed the forskolin-induced increase in FosB gene promoter activity in a homologous hypothalamic cell line. These results suggest that GCs may be a potent regulator of FosB/DeltaFosB expression, which is induced by stress, in hypothalamic neuroendocrine neurones.

UI MeSH Term Description Entries
D008297 Male Males
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D010286 Paraventricular Hypothalamic Nucleus Nucleus in the anterior part of the HYPOTHALAMUS. Hypothalamic Paraventricular Nucleus,Paraventricular Nucleus,Hypothalamic Nucleus, Paraventricular,Nucleus, Hypothalamic Paraventricular,Nucleus, Paraventricular,Nucleus, Paraventricular Hypothalamic,Paraventricular Nucleus, Hypothalamic
D003345 Corticosterone An adrenocortical steroid that has modest but significant activities as a mineralocorticoid and a glucocorticoid. (From Goodman and Gilman's The Pharmacological Basis of Therapeutics, 8th ed, p1437)
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D005576 Colforsin Potent activator of the adenylate cyclase system and the biosynthesis of cyclic AMP. From the plant COLEUS FORSKOHLII. Has antihypertensive, positive inotropic, platelet aggregation inhibitory, and smooth muscle relaxant activities; also lowers intraocular pressure and promotes release of hormones from the pituitary gland. Coleonol,Forskolin,N,N-Dimethyl-beta-alanine-5-(acetyloxy)-3-ethenyldodecahydro-10,10b-dihydroxy-3,4a,7,7,10a-pentamethyl-1-oxo-1H-naphtho(2,1-b)pyran-6-yl Ester HCl,NKH 477,NKH-477,NKH477
D005938 Glucocorticoids A group of CORTICOSTEROIDS that affect carbohydrate metabolism (GLUCONEOGENESIS, liver glycogen deposition, elevation of BLOOD SUGAR), inhibit ADRENOCORTICOTROPIC HORMONE secretion, and possess pronounced anti-inflammatory activity. They also play a role in fat and protein metabolism, maintenance of arterial blood pressure, alteration of the connective tissue response to injury, reduction in the number of circulating lymphocytes, and functioning of the central nervous system. Glucocorticoid,Glucocorticoid Effect,Glucorticoid Effects,Effect, Glucocorticoid,Effects, Glucorticoid
D000311 Adrenal Glands A pair of glands located at the cranial pole of each of the two KIDNEYS. Each adrenal gland is composed of two distinct endocrine tissues with separate embryonic origins, the ADRENAL CORTEX producing STEROIDS and the ADRENAL MEDULLA producing NEUROTRANSMITTERS. Adrenal Gland,Gland, Adrenal,Glands, Adrenal

Related Publications

G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
May 2006, Brain research,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
March 1992, Brain research. Molecular brain research,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
December 1994, Journal of neuroendocrinology,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
January 1976, Neuropatologia polska,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
January 1974, Neuropatologia polska,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
August 1988, The Journal of comparative neurology,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
February 1990, The Journal of comparative neurology,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
January 1995, Neuroreport,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
July 2005, Experimental neurology,
G Das, and K Uchida, and K Kageyama, and Y Iwasaki, and T Suda, and K Itoi
October 2023, Biology,
Copied contents to your clipboard!