Site-directed mutagenesis of glutamine residue of calmodulin. Activation of guanylate cyclase of Tetrahymena plasma membrane. 1990

S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
Department of Biochemistry, Gifu University School of Medicine, Japan.

Tetrahymena calmodulin (CaM) differs from mammalian CaM in its ability to activate Tetrahymena guanylate cyclase. Of 12 differences in amino acid sequence, two occur near the carboxyl terminus (Gln-143----Arg and Thr-146----deletion). To investigate the functional significance of the carboxyl-terminal region in activation of the guanylate cyclase, three mutated CaMs were engineered by using cassette mutagenesis of rat CaM cDNA: Gln-143----Arg (CaM.A), Thr-146----deletion (CaM.D), and Gln-143----Arg/Thr-146 deletion (CaM.AD). Recombinant wild type CaM (wCaM), CaM.A, CaM.D, and CaM.AD were indistinguishable in their ability to activate cyclic AMP phosphodiesterase. The two mutated CaMs (CaM.A and CaM.AD) with the Gln-143 replacement activated guanylate cyclase of Tetrahymena plasma membrane in the presence of Ca2+, with the maximal activation being half of that produced by Tetrahymena CaM. In contrast, neither CaM.D nor wCaM could stimulate the cyclase activity. A CaM antagonist, W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), prevented the cyclase activation by either Tetrahymena CaM, CaM.A, or CaM.AD. Thus, we conclude that Arg-143 is in a region of the molecule involved in activation of Tetrahymena guanylate cyclase. The data also suggest that the cyclase activation by Tetrahymena CaM requires complex macromolecular interactions between the entire CaM molecule and the enzyme.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002147 Calmodulin A heat-stable, low-molecular-weight activator protein found mainly in the brain and heart. The binding of calcium ions to this protein allows this protein to bind to cyclic nucleotide phosphodiesterases and to adenyl cyclase with subsequent activation. Thereby this protein modulates cyclic AMP and cyclic GMP levels. Calcium-Dependent Activator Protein,Calcium-Dependent Regulator,Bovine Activator Protein,Cyclic AMP-Phosphodiesterase Activator,Phosphodiesterase Activating Factor,Phosphodiesterase Activator Protein,Phosphodiesterase Protein Activator,Regulator, Calcium-Dependent,AMP-Phosphodiesterase Activator, Cyclic,Activating Factor, Phosphodiesterase,Activator Protein, Bovine,Activator Protein, Calcium-Dependent,Activator Protein, Phosphodiesterase,Activator, Cyclic AMP-Phosphodiesterase,Activator, Phosphodiesterase Protein,Calcium Dependent Activator Protein,Calcium Dependent Regulator,Cyclic AMP Phosphodiesterase Activator,Factor, Phosphodiesterase Activating,Protein Activator, Phosphodiesterase,Protein, Bovine Activator,Protein, Calcium-Dependent Activator,Protein, Phosphodiesterase Activator,Regulator, Calcium Dependent
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D004274 DNA, Recombinant Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected. Genes, Spliced,Recombinant DNA,Spliced Gene,Recombinant DNA Research,Recombination Joint,DNA Research, Recombinant,Gene, Spliced,Joint, Recombination,Research, Recombinant DNA,Spliced Genes
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005821 Genetic Techniques Chromosomal, biochemical, intracellular, and other methods used in the study of genetics. Genetic Technic,Genetic Technics,Genetic Technique,Technic, Genetic,Technics, Genetic,Technique, Genetic,Techniques, Genetic
D005973 Glutamine A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells. D-Glutamine,L-Glutamine,D Glutamine,L Glutamine

Related Publications

S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
September 1983, Biochemical pharmacology,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
January 1985, Comparative biochemistry and physiology. B, Comparative biochemistry,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
August 1982, The Japanese journal of experimental medicine,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
December 1983, Biochemical pharmacology,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
September 1983, Biochemistry international,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
December 1983, European journal of biochemistry,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
April 2001, Biochemical pharmacology,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
January 1987, Archives of biochemistry and biophysics,
S Nagao, and S Matsuki, and H Kanoh, and T Ozawa, and K Yamada, and Y Nozawa
January 1991, Journal of biochemistry,
Copied contents to your clipboard!