Marginal DCS events: their relation to decompression and use in DCS models. 2009

Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
Mechanical Engineering Dept., Duke Univ., Durham, NC 27708-0300, USA. laurens.howle@duke.edu

We consider the nature and utility of marginal decompression sickness (DCS) events in fitting probabilistic decompression models to experimental dive trial data. Previous works have assigned various fractional weights to marginal DCS events, so that they contributed to probabilistic model parameter optimization, but less so than did full DCS events. Inclusion of fractional weight for marginal DCS events resulted in more conservative model predictions. We explore whether marginal DCS events are correlated with exposure to decompression or are randomly occurring events. Three null models are developed and compared with a known decompression model that is tuned on dive trial data containing only marginal DCS and non-DCS events. We further investigate the technique by which marginal DCS events were previously included in parameter optimization, explore the effects of fractional weighting of marginal DCS events on model optimization, and explore the rigor of combining data containing full and marginal DCS events for probabilistic DCS model optimization. We find that although marginal DCS events are related to exposure to decompression, empirical dive data containing marginal and full DCS events cannot be combined under a single DCS model. Furthermore, we find analytically that the optimal weight for a marginal DCS event is 0. Thus marginal DCS should be counted as no-DCS events when probabilistic DCS models are optimized with binomial likelihood functions. Specifically, our study finds that inclusion of marginal DCS events in model optimization to make the dive profiles more conservative is counterproductive and worsens the model's fit to the full DCS data.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003198 Computer Simulation Computer-based representation of physical systems and phenomena such as chemical processes. Computational Modeling,Computational Modelling,Computer Models,In silico Modeling,In silico Models,In silico Simulation,Models, Computer,Computerized Models,Computer Model,Computer Simulations,Computerized Model,In silico Model,Model, Computer,Model, Computerized,Model, In silico,Modeling, Computational,Modeling, In silico,Modelling, Computational,Simulation, Computer,Simulation, In silico,Simulations, Computer
D003665 Decompression Sickness A condition occurring as a result of exposure to a rapid fall in ambient pressure. Gases, nitrogen in particular, come out of solution and form bubbles in body fluid and blood. These gas bubbles accumulate in joint spaces and the peripheral circulation impairing tissue oxygenation causing disorientation, severe pain, and potentially death. Bends,Caisson Disease,Caisson Diseases,Disease, Caisson,Diseases, Caisson,Sickness, Decompression
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012307 Risk Factors An aspect of personal behavior or lifestyle, environmental exposure, inborn or inherited characteristic, which, based on epidemiological evidence, is known to be associated with a health-related condition considered important to prevent. Health Correlates,Risk Factor Scores,Risk Scores,Social Risk Factors,Population at Risk,Populations at Risk,Correlates, Health,Factor, Risk,Factor, Social Risk,Factors, Social Risk,Risk Factor,Risk Factor Score,Risk Factor, Social,Risk Factors, Social,Risk Score,Score, Risk,Score, Risk Factor,Social Risk Factor
D015994 Incidence The number of new cases of a given disease during a given period in a specified population. It also is used for the rate at which new events occur in a defined population. It is differentiated from PREVALENCE, which refers to all cases in the population at a given time. Attack Rate,Cumulative Incidence,Incidence Proportion,Incidence Rate,Person-time Rate,Secondary Attack Rate,Attack Rate, Secondary,Attack Rates,Cumulative Incidences,Incidence Proportions,Incidence Rates,Incidence, Cumulative,Incidences,Person time Rate,Person-time Rates,Proportion, Incidence,Rate, Attack,Rate, Incidence,Rate, Person-time,Rate, Secondary Attack,Secondary Attack Rates
D016016 Proportional Hazards Models Statistical models used in survival analysis that assert that the effect of the study factors on the hazard rate in the study population is multiplicative and does not change over time. Cox Model,Cox Proportional Hazards Model,Hazard Model,Hazards Model,Hazards Models,Models, Proportional Hazards,Proportional Hazard Model,Proportional Hazards Model,Cox Models,Cox Proportional Hazards Models,Hazard Models,Proportional Hazard Models,Hazard Model, Proportional,Hazard Models, Proportional,Hazards Model, Proportional,Hazards Models, Proportional,Model, Cox,Model, Hazard,Model, Hazards,Model, Proportional Hazard,Model, Proportional Hazards,Models, Cox,Models, Hazard,Models, Hazards,Models, Proportional Hazard
D018570 Risk Assessment The qualitative or quantitative estimation of the likelihood of adverse effects that may result from exposure to specified health hazards or from the absence of beneficial influences. (Last, Dictionary of Epidemiology, 1988) Assessment, Risk,Benefit-Risk Assessment,Risk Analysis,Risk-Benefit Assessment,Health Risk Assessment,Risks and Benefits,Analysis, Risk,Assessment, Benefit-Risk,Assessment, Health Risk,Assessment, Risk-Benefit,Benefit Risk Assessment,Benefit-Risk Assessments,Benefits and Risks,Health Risk Assessments,Risk Analyses,Risk Assessment, Health,Risk Assessments,Risk Benefit Assessment,Risk-Benefit Assessments

Related Publications

Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
January 1986, General pharmacology,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
January 2006, Journal of drug education,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
January 1967, Stomatoloski vjesnik. Stomatological review,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
January 2018, Computers in biology and medicine,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
January 1986, Beitrage zur gerichtlichen Medizin,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
April 2017, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
October 2012, Lifetime data analysis,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
February 1976, Aviation, space, and environmental medicine,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
June 2008, Circulation,
Laurens E Howle, and Paul W Weber, and Richard D Vann, and Mark C Campbell
March 2007, Epilepsia,
Copied contents to your clipboard!