Anti-CD3 antibodies induce T cells from unprimed animals to secrete IL-4 both in vitro and in vivo. 1990

V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
Département de Biologie Moléculaire, Université Libre de Bruxelles, Belgium.

Recently, functional heterogeneity among Th cells has been recognized. Based on pattern of lymphokine secretion, two mutually exclusive subsets of CD4+ cells have been defined and designated Th1 (secreting IL-2 and IFN-gamma) and Th2 (secreting IL-4 and IL-5). Identification of these subsets was mostly based on the study of long term cultured T cell lines and clones, and little is known about the Th heterogeneity in vivo. In particular, it has been suggested that IL-4 producing cells cannot be detected in vivo or in primary stimulations in vitro unless responder cells had been previously primed. Our data however, indicate that anti-CD3 mediated stimulation can induce T cells isolated from unprimed animals to IL-4 production. An assay system based on the ability of IL-4 to increase Ia expression of B cells present in the environment of activated T cells was found to be more sensitive than detection of secreted IL-4 in the supernatant by conventional bioassays and was used to study IL-4 production by unprimed lymphocytes polyclonally stimulated in vivo and in vitro by anti-CD3 mAb. The results obtained indicate that CD4+ CD8- T cells able to produce IL-4 upon receptor-specific stimulation exist in the preimmune pool of adult animals. Remarkably, these cells can also be stimulated in vivo by treating animals with anti-CD3 mAb, as indicated by the in vivo induction of IL-4 specific mRNA and hyper-Ia expression on B cells. These results indicate that the inability to detect IL-4 in primary cultures is not due to different activation requirements of Th2 cells but may simply result from their lower frequency in unprimed animals.

UI MeSH Term Description Entries
D008811 Mice, Inbred DBA An inbred strain of mouse. Specific substrains are used in a variety of areas of BIOMEDICAL RESEARCH such as DBA/1J, which is used as a model for RHEUMATOID ARTHRITIS. Mice, DBA,Mouse, DBA,Mouse, Inbred DBA,DBA Mice,DBA Mice, Inbred,DBA Mouse,DBA Mouse, Inbred,Inbred DBA Mice,Inbred DBA Mouse
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D011940 Receptor Aggregation Chemically stimulated aggregation of cell surface receptors, which potentiates the action of the effector cell. Aggregation, Receptor,Capping, Receptor,Receptor Capping
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D003524 Cyclosporins A group of closely related cyclic undecapeptides from the fungi Trichoderma polysporum and Cylindocarpon lucidum. They have some antineoplastic and antifungal action and significant immunosuppressive effects. Cyclosporins have been proposed as adjuvants in tissue and organ transplantation to suppress graft rejection. Cyclosporines
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal

Related Publications

V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
June 1997, Cellular immunology,
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
January 1990, Immunology letters,
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
December 1992, Journal of immunology (Baltimore, Md. : 1950),
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
December 1990, The Journal of experimental medicine,
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
February 1993, Journal of immunology (Baltimore, Md. : 1950),
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
June 2004, The Journal of experimental medicine,
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
December 2000, Journal of immunology (Baltimore, Md. : 1950),
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
August 1991, Journal of autoimmunity,
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
February 1989, Journal of immunology (Baltimore, Md. : 1950),
V Flamand, and D Abramowicz, and M Goldman, and C Biernaux, and G Huez, and J Urbain, and M Moser, and O Leo
November 1991, The Journal of experimental medicine,
Copied contents to your clipboard!