Protein metabolism in chicken muscle cell cultures treated with cimaterol. 1990

R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
University of Alabama, Huntsville 35899.

Primary muscle cell cultures were prepared from the leg muscle of 12-d broiler chicken embryos. The partitioning agent cimaterol (10(-6) to 10(-10) M) was added on d 1 and each day thereafter, and cells were studied after 7 d in culture. Cimaterol had no effect at any level either on the percentage of nuclei within multinucleated myotubes or on the total number of nuclei within myotubes. At 10(-7) M cimaterol, the quantity of the myofibrillar protein fraction was increased by 25.1 +/- 8.0% (P less than .05) and the quantity of myosin heavy chain was increased by 30.9 +/- 4.5% (P less than .05). To understand the basis for the increase in myofibrillar protein, the incorporation rate of [3H]Leu was measured in pulse labeling experiments. The apparent synthesis rate of the soluble protein fraction and the crude myofibrillar fraction was not significantly increased by cimaterol; however, cimaterol levels greater than 10(-8) M caused a 10 to 12% increase (P less than .05) in the incorporation rate of [3H]Leu into myosin heavy chain. The effect of cimaterol on release of [3H]Leu from prelabeled protein also was assessed in pulse-chase experiments; the apparent rate of protein degradation was inhibited by 10 to 15% (P less than .05) at the higher levels of cimaterol. Dot blot analysis indicated that the quantity of myosin heavy chain mRNA was elevated in cimaterol-treated cultures. Thus, the increased quantity of myofibrillar proteins in embryonic broiler muscle cell cultures is the combined result of a stimulation in the rate of protein synthesis and an inhibition in the rate of protein degradation.

UI MeSH Term Description Entries
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D009218 Myosins A diverse superfamily of proteins that function as translocating proteins. They share the common characteristics of being able to bind ACTINS and hydrolyze MgATP. Myosins generally consist of heavy chains which are involved in locomotion, and light chains which are involved in regulation. Within the structure of myosin heavy chain are three domains: the head, the neck and the tail. The head region of the heavy chain contains the actin binding domain and MgATPase domain which provides energy for locomotion. The neck region is involved in binding the light-chains. The tail region provides the anchoring point that maintains the position of the heavy chain. The superfamily of myosins is organized into structural classes based upon the type and arrangement of the subunits they contain. Myosin ATPase,ATPase, Actin-Activated,ATPase, Actomyosin,ATPase, Myosin,Actin-Activated ATPase,Actomyosin ATPase,Actomyosin Adenosinetriphosphatase,Adenosine Triphosphatase, Myosin,Adenosinetriphosphatase, Actomyosin,Adenosinetriphosphatase, Myosin,Myosin,Myosin Adenosinetriphosphatase,ATPase, Actin Activated,Actin Activated ATPase,Myosin Adenosine Triphosphatase
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004983 Ethanolamines AMINO ALCOHOLS containing the ETHANOLAMINE; (-NH2CH2CHOH) group and its derivatives. Aminoethanols
D000318 Adrenergic beta-Agonists Drugs that selectively bind to and activate beta-adrenergic receptors. Adrenergic beta-Receptor Agonists,beta-Adrenergic Agonists,beta-Adrenergic Receptor Agonists,Adrenergic beta-Agonist,Adrenergic beta-Receptor Agonist,Betamimetics,Receptor Agonists, beta-Adrenergic,Receptors Agonists, Adrenergic beta,beta-Adrenergic Agonist,beta-Adrenergic Receptor Agonist,Adrenergic beta Agonist,Adrenergic beta Agonists,Adrenergic beta Receptor Agonist,Adrenergic beta Receptor Agonists,Agonist, Adrenergic beta-Receptor,Agonist, beta-Adrenergic,Agonist, beta-Adrenergic Receptor,Agonists, Adrenergic beta-Receptor,Agonists, beta-Adrenergic,Agonists, beta-Adrenergic Receptor,Receptor Agonist, beta-Adrenergic,Receptor Agonists, beta Adrenergic,beta Adrenergic Agonist,beta Adrenergic Agonists,beta Adrenergic Receptor Agonist,beta Adrenergic Receptor Agonists,beta-Agonist, Adrenergic,beta-Agonists, Adrenergic,beta-Receptor Agonist, Adrenergic,beta-Receptor Agonists, Adrenergic

Related Publications

R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
January 1990, Meat science,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
April 1990, Domestic animal endocrinology,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
October 1989, Journal of animal science,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
May 1976, The Proceedings of the Nutrition Society,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
September 1989, Metabolism: clinical and experimental,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
April 1998, Journal of animal science,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
December 1970, The Biochemical journal,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
January 1994, Growth, development, and aging : GDA,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
January 1981, Muscle & nerve,
R B Young, and D M Moriarity, and C E McGee, and W R Farrar, and H E Richter
October 1984, Muscle & nerve,
Copied contents to your clipboard!