| D007624 |
KB Cells |
This line KB is now known to be a subline of the ubiquitous KERATIN-forming tumor cell line HeLa. It was originally thought to be derived from an epidermal carcinoma of the mouth, but was subsequently found, based on isoenzyme analysis, HeLa marker chromosomes, and DNA fingerprinting, to have been established via contamination by HELA CELLS. The cells are positive for keratin by immunoperoxidase staining. KB cells have been reported to contain human papillomavirus18 (HPV-18) sequences. |
HeLa-KB Cells,Cell, HeLa-KB,Cell, KB,Cells, HeLa-KB,Cells, KB,HeLa KB Cells,HeLa-KB Cell,KB Cell |
|
| D007700 |
Kinetics |
The rate dynamics in chemical or physical systems. |
|
|
| D008562 |
Membrane Glycoproteins |
Glycoproteins found on the membrane or surface of cells. |
Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell |
|
| D009363 |
Neoplasm Proteins |
Proteins whose abnormal expression (gain or loss) are associated with the development, growth, or progression of NEOPLASMS. Some neoplasm proteins are tumor antigens (ANTIGENS, NEOPLASM), i.e. they induce an immune reaction to their tumor. Many neoplasm proteins have been characterized and are used as tumor markers (BIOMARKERS, TUMOR) when they are detectable in cells and body fluids as monitors for the presence or growth of tumors. Abnormal expression of ONCOGENE PROTEINS is involved in neoplastic transformation, whereas the loss of expression of TUMOR SUPPRESSOR PROTEINS is involved with the loss of growth control and progression of the neoplasm. |
Proteins, Neoplasm |
|
| D010710 |
Phosphates |
Inorganic salts of phosphoric acid. |
Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic |
|
| D010766 |
Phosphorylation |
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. |
Phosphorylations |
|
| D011493 |
Protein Kinase C |
An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. |
Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC |
|
| D002462 |
Cell Membrane |
The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. |
Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes |
|
| D004351 |
Drug Resistance |
Diminished or failed response of an organism, disease or tissue to the intended effectiveness of a chemical or drug. It should be differentiated from DRUG TOLERANCE which is the progressive diminution of the susceptibility of a human or animal to the effects of a drug, as a result of continued administration. |
Resistance, Drug |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|