Effect of microsomal enzyme inducers on biliary and urinary excretion of acetaminophen metabolites in rats. Decreased hepatobiliary and increased hepatovascular transport of acetaminophen-glucuronide after microsomal enzyme induction. 1990

Z Gregus, and C Madhu, and C D Klaassen
Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City 66103.

Treatment of rats with phenobarbital (PB), 3-methylcholanthrene, and pregnenolone-16 alpha-carbonitrile increased the total (biliary plus urinary) excretion of thioether and glucuronic acid conjugates of acetaminophen (AA) without influencing AA-sulfate excretion, suggesting that these microsomal enzyme inducers enhance both cytochrome P-450-mediated toxication and UDP-glucuronosyltransferase-mediated detoxication of AA. However, induction with transstilbene oxide (TSO) did not increase the total excretion of AA-thioethers or AA-glucuronide and decreased AA-sulfate excretion. In addition, all inducers increased the ratio of AA metabolites excreted into urine over that excreted into bile. The extent of this shift from biliary to urinary excretion was dependent on both the AA metabolite and the inducer. The largest shift in the excretory route was seen with AA-glucuronide and induction with PB and TSO as inducers. Specifically, PB and TSO treatments decreased biliary excretion of AA-glucuronide by 70 and 89%, respectively, and increased its blood concentration up to 6- and 11-fold and urinary excretion 3- and 3.6-fold, respectively. Galactosamine depletes UDP-glucuronic acid from the liver only, thereby inhibiting hepatic but not extrahepatic glucuronidation. Galactosamine treatment prevented the PB-induced increase in AA-glucuronide in blood and urine. This suggests that the PB-induced increases in AA-glucuronide in blood and urine originated from the liver. Thus, microsomal enzyme inducers not only influence xenobiotic biotransformation, but may also after the contribution of the excretory routes (i.e. bile and urine) in the elimination of xenobiotic metabolites by changing the direction of hepatic transport.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D008748 Methylcholanthrene A carcinogen that is often used in experimental cancer studies. 20-Methylcholanthrene,3-Methylcholanthrene,20 Methylcholanthrene,3 Methylcholanthrene
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011285 Pregnenolone Carbonitrile A catatoxic steroid and microsomal enzyme inducer having significant effects on the induction of cytochrome P450. It has also demonstrated the potential for protective capability against acetaminophen-induced liver damage. PCN,Pregnenolone 16 alpha-Carbonitrile,Pregnenolone Carbonitrile, (3 beta)-Isomer,Pregnenolone Carbonitrile, (3 beta,16 beta)-Isomer,16 alpha-Carbonitrile, Pregnenolone,Carbonitrile, Pregnenolone,Pregnenolone 16 alpha Carbonitrile
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D005965 Glucuronates Derivatives of GLUCURONIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the 6-carboxy glucose structure. Glucosiduronates,Glucuronic Acids,Acids, Glucuronic
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3

Related Publications

Z Gregus, and C Madhu, and C D Klaassen
November 2001, Toxicology and applied pharmacology,
Z Gregus, and C Madhu, and C D Klaassen
February 2002, Toxicological sciences : an official journal of the Society of Toxicology,
Z Gregus, and C Madhu, and C D Klaassen
November 1974, The Journal of pharmacology and experimental therapeutics,
Z Gregus, and C Madhu, and C D Klaassen
February 1986, Journal of the National Cancer Institute,
Z Gregus, and C Madhu, and C D Klaassen
November 1976, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Z Gregus, and C Madhu, and C D Klaassen
January 1976, Acta pharmacologica et toxicologica,
Z Gregus, and C Madhu, and C D Klaassen
January 1978, Drug metabolism and disposition: the biological fate of chemicals,
Z Gregus, and C Madhu, and C D Klaassen
March 1997, Research communications in molecular pathology and pharmacology,
Z Gregus, and C Madhu, and C D Klaassen
January 1976, Acta pharmacologica et toxicologica,
Z Gregus, and C Madhu, and C D Klaassen
December 2005, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!