Selective inactivation by chlorofluoroacetamides of the major phenobarbital-inducible form(s) of rat liver cytochrome P-450. 1990

J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson 85721.

Five N-monosubstituted chlorofluoroacetamides have been tested as potential specific irreversible inhibitors of the major phenobarbital-inducible form of rat liver cytochrome P-450 (P450IIB1). In vitro, N-(2-phenethyl)chlorofluoroacetamide was ineffective in causing a time-dependent loss of P450IIB1-mediated androstenedione 16 beta-hydroxylase activity in liver microsomes from phenobarbital-treated rats. However, addition of a nitro or bromo substitutent at the para position of the phenyl group or addition of a second phenyl group at the 1- or 2-position on the phenethyl side chain yielded compounds that caused a selective time-dependent decrease in androstenedione 16 beta-hydroxylase activity relative to four other P-450 form-specific androstenedione or progesterone hydroxylase activities monitored. The two compounds that were the most effective in inactivating P450IIB1 in vitro, N-(2-p-bromophenethyl) and N-(2-p-nitrophenethyl)chlorofluoroacetamide were also administered ip to phenobarbital-treated rats, and inhibition of cytochromes P-450 was assessed by in vitro assays of steroid and R- and S-warfarin hydroxylation in subsequently prepared hepatic microsomes. Both compounds selectively inhibited P450IIB1, and at a dose (200 mg/kg) of N-(2-p-nitrophenethyl)chlorofluoroacetamide that reduced androstenedione 16 beta-hydroxylase activity to approximately one-third of the control level, only two other activities, both attributable to P450IIB1, were decreased. In contrast, steroid and warfarin hydroxylase activities indicative of at least five other cytochromes P-450 were unaffected by the compound. These results indicate the feasibility of an empirical approach to the design of specific cytochrome P-450 inactivators.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010634 Phenobarbital A barbituric acid derivative that acts as a nonselective central nervous system depressant. It potentiates GAMMA-AMINOBUTYRIC ACID action on GABA-A RECEPTORS, and modulates chloride currents through receptor channels. It also inhibits glutamate induced depolarizations. Phenemal,Phenobarbitone,Phenylbarbital,Gardenal,Hysteps,Luminal,Phenobarbital Sodium,Phenobarbital, Monosodium Salt,Phenylethylbarbituric Acid,Acid, Phenylethylbarbituric,Monosodium Salt Phenobarbital,Sodium, Phenobarbital
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004790 Enzyme Induction An increase in the rate of synthesis of an enzyme due to the presence of an inducer which acts to derepress the gene responsible for enzyme synthesis. Induction, Enzyme
D006846 Hydrocarbons, Halogenated Hydrocarbon compounds with one or more HYDROGEN atoms substituted with HALOGENS. Halogenated Hydrocarbons
D000081 Acetamides Derivatives of acetamide that are used as solvents, as mild irritants, and in organic synthesis.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013250 Steroid Hydroxylases Cytochrome P-450 monooxygenases (MIXED FUNCTION OXYGENASES) that are important in steroid biosynthesis and metabolism. Steroid Hydroxylase,Steroid Monooxygenases,Hydroxylase, Steroid,Hydroxylases, Steroid,Monooxygenases, Steroid

Related Publications

J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
January 1987, Drug metabolism and disposition: the biological fate of chemicals,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
July 1985, The Journal of biological chemistry,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
July 1985, The Journal of biological chemistry,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
March 1991, Journal of pharmacobio-dynamics,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
April 1982, Biochemical and biophysical research communications,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
January 1989, Drug metabolism and disposition: the biological fate of chemicals,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
July 1983, Proceedings of the National Academy of Sciences of the United States of America,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
May 1987, The Journal of biological chemistry,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
April 1993, Biochimica et biophysica acta,
J Halpert, and J Y Jaw, and C Balfour, and L S Kaminsky
April 1984, Journal of biochemistry,
Copied contents to your clipboard!