Binding, internalization, and degradation of high density lipoprotein by cultured normal human fibroblasts. 1977

N E Miller, and D B Weinstein, and D Steinberg

Comparative studies were made of the metabolism of plasma high density lipoprotein (HDL) and low density lipoprotein (LDL) by cultured normal human fibroblasts. On a molar basis, the surface binding of (125)I-HDL was only slightly less than that of (125)I-LDL, whereas the rates of internalization and degradation of (125)I-HDL were very low relative to those of (125)I-LDL. The relationships of internalization and degradation to binding suggested the presence of a saturable uptake mechanism for LDL functionally related to high-affinity binding. This was confirmed by the finding that the total uptake of (125)I-LDL (internalized plus degraded) at 5 micro g LDL protein/ml was 100-fold greater than that attributable to fluid or bulk pinocytosis, quantified with [(14)C]sucrose, and 10-fold greater than that attributable to the sum of fluid endocytosis and adsorptive endocytosis. In contrast, (125)I-HDL uptake could be almost completely accounted for by the uptake of medium during pinocytosis and by invagination of surface membrane (bearing bound lipoprotein) during pinocytosis. These findings imply that, at most, only a small fraction of bound HDL binds to the high-affinity LDL receptor and/or that HDL binding there is internalized very slowly. The rate of (125)I-HDL degradation by cultured fibroblasts (per unit cell mass) exceeded an estimate of the turnover rate of HDL in vivo, suggesting that peripheral tissues may contribute to HDL catabolism. In accordance with their differing rates of uptake and cholesterol content, LDL increased the cholesterol content of fibroblasts and selectively inhibited sterol biosynthesis, whereas HDL had neither effect.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008075 Lipoproteins, HDL A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases. High Density Lipoprotein,High-Density Lipoprotein,High-Density Lipoproteins,alpha-Lipoprotein,alpha-Lipoproteins,Heavy Lipoproteins,alpha-1 Lipoprotein,Density Lipoprotein, High,HDL Lipoproteins,High Density Lipoproteins,Lipoprotein, High Density,Lipoprotein, High-Density,Lipoproteins, Heavy,Lipoproteins, High-Density,alpha Lipoprotein,alpha Lipoproteins
D008077 Lipoproteins, LDL A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues. Low-Density Lipoprotein,Low-Density Lipoproteins,beta-Lipoprotein,beta-Lipoproteins,LDL(1),LDL(2),LDL-1,LDL-2,LDL1,LDL2,Low-Density Lipoprotein 1,Low-Density Lipoprotein 2,LDL Lipoproteins,Lipoprotein, Low-Density,Lipoproteins, Low-Density,Low Density Lipoprotein,Low Density Lipoprotein 1,Low Density Lipoprotein 2,Low Density Lipoproteins,beta Lipoprotein,beta Lipoproteins
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004705 Endocytosis Cellular uptake of extracellular materials within membrane-limited vacuoles or microvesicles. ENDOSOMES play a central role in endocytosis. Endocytoses
D005347 Fibroblasts Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules. Fibroblast
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

N E Miller, and D B Weinstein, and D Steinberg
January 1976, Proceedings of the National Academy of Sciences of the United States of America,
N E Miller, and D B Weinstein, and D Steinberg
May 1983, Biochemical and biophysical research communications,
N E Miller, and D B Weinstein, and D Steinberg
April 1984, Biochimica et biophysica acta,
N E Miller, and D B Weinstein, and D Steinberg
May 1987, The Journal of biological chemistry,
N E Miller, and D B Weinstein, and D Steinberg
September 1989, Biochimica et biophysica acta,
N E Miller, and D B Weinstein, and D Steinberg
June 1979, Canadian journal of biochemistry,
N E Miller, and D B Weinstein, and D Steinberg
September 1995, Cellular signalling,
N E Miller, and D B Weinstein, and D Steinberg
February 1981, Cell biology international reports,
N E Miller, and D B Weinstein, and D Steinberg
May 1979, The Journal of clinical endocrinology and metabolism,
Copied contents to your clipboard!