IL-6 is an accessory signal in the alternative CD2-mediated pathway of T cell activation. 1990

K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
Department of Medicine and Pathophysiology, University of Leuven, Belgium.

Recent studies have demonstrated that IL-1 and IL-6 are synergistic accessory signals for activation of T cells. In this study, highly purified human T cells were cultured with either a stimulating pair of anti-CD2 mAb or with immobilized anti-CD3 mAb. Monocytes, a cellfree monocyte culture supernatant or IL-1 were required for anti-CD2-stimulated T cell proliferation, and they each strongly enhanced anti-CD3-induced T cell growth. IL-6 was synergistic with IL-1 as a helper factor for T cell growth after activation via CD2, but we could not demonstrate any effect of IL-6 in the CD3 pathway. The mechanism of the synergistic helper activity of IL-1 and IL-6 on T cell activation in the CD2 pathway was further examined. IL-1 (but not IL-6) was required for induction of IL-2 production. Both IL-1 and IL-6 enhanced IL-2R (p55) expression and the proliferative response to IL-2. T cell proliferation after stimulation with anti-CD2 and IL-1 or IL-1/IL-6 proceeded through an autocrine IL-2-dependent pathway. Moreover we found that, in the absence of IL-1, IL-6 still supported a transient and limited proliferation of anti-CD2- (but not of anti-CD3-) stimulated T cells, which apparently was independent of the autocrine growth factors IL-2 or IL-4. Our data suggest that IL-6 is important as an accessory signal for T cell growth in the CD2 pathway of T cell activation.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D007376 Interleukin-2 A soluble substance elaborated by antigen- or mitogen-stimulated T-LYMPHOCYTES which induces DNA synthesis in naive lymphocytes. IL-2,Lymphocyte Mitogenic Factor,T-Cell Growth Factor,TCGF,IL2,Interleukin II,Interleukine 2,RU 49637,RU-49637,Ro-23-6019,Ro-236019,T-Cell Stimulating Factor,Thymocyte Stimulating Factor,Interleukin 2,Mitogenic Factor, Lymphocyte,RU49637,Ro 23 6019,Ro 236019,Ro236019,T Cell Growth Factor,T Cell Stimulating Factor
D008213 Lymphocyte Activation Morphologic alteration of small B LYMPHOCYTES or T LYMPHOCYTES in culture into large blast-like cells able to synthesize DNA and RNA and to divide mitotically. It is induced by INTERLEUKINS; MITOGENS such as PHYTOHEMAGGLUTININS, and by specific ANTIGENS. It may also occur in vivo as in GRAFT REJECTION. Blast Transformation,Blastogenesis,Lymphoblast Transformation,Lymphocyte Stimulation,Lymphocyte Transformation,Transformation, Blast,Transformation, Lymphoblast,Transformation, Lymphocyte,Activation, Lymphocyte,Stimulation, Lymphocyte
D009000 Monocytes Large, phagocytic mononuclear leukocytes produced in the vertebrate BONE MARROW and released into the BLOOD; contain a large, oval or somewhat indented nucleus surrounded by voluminous cytoplasm and numerous organelles. Monocyte
D011948 Receptors, Antigen, T-Cell Molecules on the surface of T-lymphocytes that recognize and combine with antigens. The receptors are non-covalently associated with a complex of several polypeptides collectively called CD3 antigens (CD3 COMPLEX). Recognition of foreign antigen and the major histocompatibility complex is accomplished by a single heterodimeric antigen-receptor structure, composed of either alpha-beta (RECEPTORS, ANTIGEN, T-CELL, ALPHA-BETA) or gamma-delta (RECEPTORS, ANTIGEN, T-CELL, GAMMA-DELTA) chains. Antigen Receptors, T-Cell,T-Cell Receptors,Receptors, T-Cell Antigen,T-Cell Antigen Receptor,T-Cell Receptor,Antigen Receptor, T-Cell,Antigen Receptors, T Cell,Receptor, T-Cell,Receptor, T-Cell Antigen,Receptors, T Cell Antigen,Receptors, T-Cell,T Cell Antigen Receptor,T Cell Receptor,T Cell Receptors,T-Cell Antigen Receptors
D011971 Receptors, Immunologic Cell surface molecules on cells of the immune system that specifically bind surface molecules or messenger molecules and trigger changes in the behavior of cells. Although these receptors were first identified in the immune system, many have important functions elsewhere. Immunologic Receptors,Immunologic Receptor,Immunological Receptors,Receptor, Immunologic,Receptors, Immunological
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000945 Antigens, Differentiation, T-Lymphocyte Antigens expressed on the cell membrane of T-lymphocytes during differentiation, activation, and normal and neoplastic transformation. Their phenotypic characterization is important in differential diagnosis and studies of thymic ontogeny and T-cell function. Antigens, Differentiation, T-Cell,Differentiation Antigens, T-Cell,L3T4 Antigens,Leu Antigens, T-Lymphocyte,T-Cell Differentiation Antigens,T-Lymphocyte Differentiation Antigens,T6 Antigens,Antigens, Differentiation, T Lymphocyte,Differentiation Antigens, T Lymphocyte,Antigens, L3T4,Antigens, T-Cell Differentiation,Antigens, T-Lymphocyte Differentiation,Antigens, T-Lymphocyte Leu,Antigens, T6,Differentiation Antigens, T Cell,Differentiation Antigens, T-Lymphocyte,Leu Antigens, T Lymphocyte,T Cell Differentiation Antigens,T Lymphocyte Differentiation Antigens,T-Lymphocyte Leu Antigens
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte

Related Publications

K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
December 1988, Journal of immunology (Baltimore, Md. : 1950),
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
June 1992, Cellular immunology,
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
February 2009, Molecular immunology,
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
March 1998, Immunology,
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
July 1994, International archives of allergy and immunology,
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
September 1986, Journal of immunology (Baltimore, Md. : 1950),
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
September 1985, Journal of immunology (Baltimore, Md. : 1950),
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
March 1991, Journal of immunology (Baltimore, Md. : 1950),
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
January 1987, Nature,
K Lorré, and J Van Damme, and J Verwilghen, and M L Baroja, and J L Ceuppens
February 1987, Transplantation proceedings,
Copied contents to your clipboard!