Fentanyl inhibits glucose-stimulated insulin release from beta-cells in rat pancreatic islets. 2009

Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
Department of Pain Management, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai 2000120, China. qiantaolai@sina.com

OBJECTIVE To explore the effects of fentanyl on insulin release from freshly isolated rat pancreatic islets in static culture. METHODS Islets were isolated from the pancreas of mature Sprague Dawley rats by common bile duct intraductal collagenase V digestion and were purified by discontinuous Ficoll density gradient centrifugation. The islets were divided into four groups according to the fentanyl concentration: control group (0 ng/mL), group I (0.3 ng/mL), group II (3.0 ng/mL), and group III (30 ng/mL). In each group, the islets were co-cultured for 48 h with drugs under static conditions with fentanyl alone, fentanyl + 0.1 microg/mL naloxone or fentanyl + 1.0 microg/mL naloxone. Cell viability was assessed by the MTT assay. Insulin release in response to low and high concentrations (2.8 mmol/L and 16.7 mmol/L, respectively) of glucose was investigated and electron microscopy morphological assessment was performed. RESULTS Low- and high-glucose-stimulated insulin release in the control group was significantly higher than in groups II and III (62.33 +/- 9.67 microIU vs 47.75 +/- 8.47 microIU, 39.67 +/- 6.18 microIU and 125.5 +/- 22.04 microIU vs 96.17 +/- 14.17 microIU, 75.17 +/- 13.57 microIU, respectively, P < 0.01) and was lowest in group III (P < 0.01). After adding 1 microg/mL naloxone, insulin release in groups II and III was not different from the control group. Electron microscopy studies showed that the islets were damaged by 30 ng/mL fentanyl. CONCLUSIONS Fentanyl inhibited glucose-stimulated insulin release from rat islets, which could be prevented by naloxone. Higher concentrations of fentanyl significantly damaged beta-cells of rat islets.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D008297 Male Males
D009270 Naloxone A specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. MRZ 2593-Br,MRZ-2593,Nalone,Naloxon Curamed,Naloxon-Ratiopharm,Naloxone Abello,Naloxone Hydrobromide,Naloxone Hydrochloride,Naloxone Hydrochloride Dihydride,Naloxone Hydrochloride, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Naloxone, (5 beta,9 alpha,13 alpha,14 alpha)-Isomer,Narcan,Narcanti,Abello, Naloxone,Curamed, Naloxon,Dihydride, Naloxone Hydrochloride,Hydrobromide, Naloxone,Hydrochloride Dihydride, Naloxone,Hydrochloride, Naloxone,MRZ 2593,MRZ 2593 Br,MRZ 2593Br,MRZ2593,Naloxon Ratiopharm
D005283 Fentanyl A potent narcotic analgesic, abuse of which leads to habituation or addiction. It is primarily a mu-opioid agonist. Fentanyl is also used as an adjunct to general anesthetics, and as an anesthetic for induction and maintenance. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1078) Phentanyl,Duragesic,Durogesic,Fentanest,Fentanyl Citrate,Fentora,R-4263,Sublimaze,Transmucosal Oral Fentanyl Citrate,R 4263,R4263
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D000078790 Insulin Secretion Production and release of insulin from PANCREATIC BETA CELLS that primarily occurs in response to elevated BLOOD GLUCOSE levels. Secretion, Insulin
D000701 Analgesics, Opioid Compounds with activity like OPIATE ALKALOIDS, acting at OPIOID RECEPTORS. Properties include induction of ANALGESIA or NARCOSIS. Opioid,Opioid Analgesic,Opioid Analgesics,Opioids,Full Opioid Agonists,Opioid Full Agonists,Opioid Mixed Agonist-Antagonists,Opioid Partial Agonists,Partial Opioid Agonists,Agonist-Antagonists, Opioid Mixed,Agonists, Full Opioid,Agonists, Opioid Full,Agonists, Opioid Partial,Agonists, Partial Opioid,Analgesic, Opioid,Full Agonists, Opioid,Mixed Agonist-Antagonists, Opioid,Opioid Agonists, Full,Opioid Agonists, Partial,Opioid Mixed Agonist Antagonists,Partial Agonists, Opioid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
October 1976, FEBS letters,
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
April 1989, Biochemical and biophysical research communications,
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
January 1988, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
August 1980, Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme,
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
October 1997, Journal of pineal research,
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
February 2005, American journal of physiology. Endocrinology and metabolism,
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
July 1999, Diabetes,
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
July 2005, Regulatory peptides,
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
February 1991, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
Tao-Lai Qian, and Xin-Hua Wang, and Sheng Liu, and Liang Ma, and Ying Lu
September 1976, Acta endocrinologica,
Copied contents to your clipboard!