Taxol-induced neuropathy after nerve crush: long-term effects on Schwann and endoneurial cells. 1990

V S Vuorinen, and M Röyttä
Department of Pathology, University of Turku, Finland.

The present investigation is a continuation of previous studies showing taxol-induced changes up to 4 weeks after a nerve crush. To evaluate the long-term cellular response to taxol, we have extended our morphological analysis of these changes in the taxol-treated nerve crush for up to 40 weeks after a single injection of taxol (PI). The results showed that Schwann cells exhibited a long-lasting and marked response when taxol was injected into the crushed peripheral nerve. During the first 2 months PI, taxol-induced giant axonal bulbs showed the formation of primitive nodes of Ranvier as a result of Schwann cell invaginations. The Schwann cell invaginations developed into nodes of Ranvier after 3-4 months PI together with the recovery of axonal bulbs. Ultrastructurally, cytoplasmic microtubule-related abnormalities were numerous up to 3 months PI and microtubules were seen to enclose degenerative myelin. Taxol-induced abnormalities in Schwann cells did not prevent their ability to produce myelin sheaths, although the accumulation of microtubules between myelin lamellae caused swellings of Schmidt-Lanterman incisures and paranodal myelin loops. Abnormal, extracellular collagen-like 5-nm-thin fibrils were noted closely associated with Schwann cells up to 10 weeks PI. Endoneurial cells, present as long rows without interconnections were noted in areas devoid of axonal sprouts up to 6-8 weeks PI. These cells showed marked cytoplasmic elongations and were covered by thickened basal lamina and contained several microtubule-related cytoplasmic structures, some of which have not been described previously. Taxol, when injected into crushed sciatic nerve induced a long-lasting response upon the Schwann cells with several ultrastructural abnormalities which correlate with changes in myelination and the development of nodes of Ranvier. These findings suggest that normal microtubule turnover is necessary for Schwann cells during nerve fiber regeneration.

UI MeSH Term Description Entries
D008297 Male Males
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009409 Nerve Crush Treatment of muscles and nerves under pressure as a result of crush injuries. Crush, Nerve
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003238 Connective Tissue Tissue that supports and binds other tissues. It consists of CONNECTIVE TISSUE CELLS embedded in a large amount of EXTRACELLULAR MATRIX. Connective Tissues,Tissue, Connective,Tissues, Connective
D000470 Alkaloids Organic nitrogenous bases. Many alkaloids of medical importance occur in the animal and vegetable kingdoms, and some have been synthesized. (Grant & Hackh's Chemical Dictionary, 5th ed) Alkaloid,Plant Alkaloid,Plant Alkaloids,Alkaloid, Plant,Alkaloids, Plant
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

V S Vuorinen, and M Röyttä
January 1988, Acta neuropathologica,
V S Vuorinen, and M Röyttä
October 1984, Journal of neurocytology,
V S Vuorinen, and M Röyttä
August 2013, Journal of molecular histology,
V S Vuorinen, and M Röyttä
March 2013, Journal of molecular neuroscience : MN,
V S Vuorinen, and M Röyttä
December 1990, Brain research,
V S Vuorinen, and M Röyttä
January 2005, Microsurgery,
Copied contents to your clipboard!