RFLP for BgIII at the human tyrosinase (TYR) locus. 1990

R A Spritz, and K M Strunk
Laboratory of Genetics, University of Wisconsin, Madison 53706.

UI MeSH Term Description Entries
D012150 Polymorphism, Restriction Fragment Length Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment. RFLP,Restriction Fragment Length Polymorphism,RFLPs,Restriction Fragment Length Polymorphisms
D002880 Chromosomes, Human, Pair 11 A specific pair of GROUP C CHROMOSOMES of the human chromosome classification. Chromosome 11
D004156 Catechol Oxidase An enzyme of the oxidoreductase class that catalyzes the reaction between catechol and oxygen to yield benzoquinone and water. It is a complex of copper-containing proteins that acts also on a variety of substituted catechols. EC 1.10.3.1. Diphenol Oxidases,Diphenol Oxidase,Polyphenol Oxidase,Polyphenoloxidase,Oxidase, Catechol,Oxidase, Diphenol,Oxidase, Polyphenol,Oxidases, Diphenol
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001426 Bacterial Proteins Proteins found in any species of bacterium. Bacterial Gene Products,Bacterial Gene Proteins,Gene Products, Bacterial,Bacterial Gene Product,Bacterial Gene Protein,Bacterial Protein,Gene Product, Bacterial,Gene Protein, Bacterial,Gene Proteins, Bacterial,Protein, Bacterial,Proteins, Bacterial
D014442 Monophenol Monooxygenase An enzyme of the oxidoreductase class that catalyzes the reaction between L-tyrosine, L-dopa, and oxygen to yield L-dopa, dopaquinone, and water. It is a copper protein that acts also on catechols, catalyzing some of the same reactions as CATECHOL OXIDASE. EC 1.14.18.1. Dopa Oxidase,Phenoloxidase,Tyrosinase,Cresolase,Phenol Oxidase,Phenoloxidase A,Phenoloxidase B,Monooxygenase, Monophenol,Oxidase, Dopa,Oxidase, Phenol
D015252 Deoxyribonucleases, Type II Site-Specific Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.4. DNA Restriction Enzymes, Type II,DNase, Site-Specific, Type II,Restriction Endonucleases, Type II,Type II Restriction Enzymes,DNase, Site Specific, Type II,Deoxyribonucleases, Type II, Site Specific,Deoxyribonucleases, Type II, Site-Specific,Site-Specific DNase, Type II,Type II Site Specific DNase,Type II Site Specific Deoxyribonucleases,Type II Site-Specific DNase,Type II Site-Specific Deoxyribonucleases,Deoxyribonucleases, Type II Site Specific,Site Specific DNase, Type II

Related Publications

R A Spritz, and K M Strunk
October 1990, Nucleic acids research,
R A Spritz, and K M Strunk
September 1990, Nucleic acids research,
R A Spritz, and K M Strunk
May 1990, Nucleic acids research,
R A Spritz, and K M Strunk
September 1990, Nucleic acids research,
R A Spritz, and K M Strunk
September 2000, Journal of dermatological science,
R A Spritz, and K M Strunk
July 1991, Nucleic acids research,
R A Spritz, and K M Strunk
May 1988, Nucleic acids research,
R A Spritz, and K M Strunk
March 1991, Nucleic acids research,
R A Spritz, and K M Strunk
January 1989, Nucleic acids research,
Copied contents to your clipboard!