The selective D(3) receptor antagonist, S33084, improves parkinsonian-like motor dysfunction but does not affect L-DOPA-induced dyskinesia in 6-hydroxydopamine hemi-lesioned rats. 2010

Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
Department of Experimental and Clinical Medicine, Section of Pharmacology, University of Ferrara, via Fossato di Mortara 17-19, 44100 Ferrara, Italy.

Despite evidence linking dopamine D(3) receptors to the etiology of Parkinson's disease and L-DOPA-induced dyskinesia, the potential therapeutic utility of D(3) receptor ligands remains unclear. In the present study, we investigated whether the selective D(3) receptor antagonist, S33084, affects development and expression of abnormal involuntary movements (AIMs), a behavioural correlate of dyskinesia, in rats hemi-lesioned with 6-hydroxydopamine and chronically treated with L-DOPA. The ability of S33084, alone or in combination with L-DOPA, to attenuate 6-hydroxydopamine induced motor deficits was also investigated employing a battery of behavioural tests. Acute administration of S33084 (0.64 mg/kg, s.c.) did not attenuate the induction of AIMs in dyskinetic rats upon challenge with L-DOPA (6 mg/kg, s.c.). Moreover, S33084 (0.64 mg/kg) did not prevent the development of AIMs affecting axial, limb and orolingual muscles when chronically administered together with L-DOPA (6 mg/kg for 21 days). However, both acute and chronic administration of S33084 enhanced L-DOPA-induced contralateral turning, suggesting potential antiparkinsonian properties. Furthermore, S33084 (0.01-0.64 mg/kg) dose-dependently attenuated parkinsonian disabilities, including bradykinesia, in drag and rotarod tests, although, in these procedures, the combination of S33084 with L-DOPA did not produce synergistic effect. It is concluded that sustained D(3) receptor blockade does not blunt L-DOPA-induced dyskinesia in hemiparkinsonian rats. However, D(3) receptor antagonism may be associated with antiparkinsonian properties. The clinical relevance of these observations will be of interest to explore further.

UI MeSH Term Description Entries
D007980 Levodopa The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. L-Dopa,3-Hydroxy-L-tyrosine,Dopaflex,Dopar,L-3,4-Dihydroxyphenylalanine,Larodopa,Levopa,3 Hydroxy L tyrosine,L 3,4 Dihydroxyphenylalanine,L Dopa
D008297 Male Males
D011758 Pyrroles Azoles of one NITROGEN and two double bonds that have aromatic chemical properties. Pyrrole
D004185 Disability Evaluation Determination of the degree of a physical, mental, or emotional handicap. The diagnosis is applied to legal qualification for benefits and income under disability insurance and to eligibility for Social Security and workmen's compensation benefits. Disability Evaluations,Evaluation, Disability,Evaluations, Disability
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004347 Drug Interactions The action of a drug that may affect the activity, metabolism, or toxicity of another drug. Drug Interaction,Interaction, Drug,Interactions, Drug
D004409 Dyskinesia, Drug-Induced Abnormal movements, including HYPERKINESIS; HYPOKINESIA; TREMOR; and DYSTONIA, associated with the use of certain medications or drugs. Muscles of the face, trunk, neck, and extremities are most commonly affected. Tardive dyskinesia refers to abnormal hyperkinetic movements of the muscles of the face, tongue, and neck associated with the use of neuroleptic agents (see ANTIPSYCHOTIC AGENTS). (Adams et al., Principles of Neurology, 6th ed, p1199) Dyskinesia, Medication-Induced,Medication-Induced Dyskinesia,Drug-Induced Dyskinesia,Drug-Induced Dyskinesias,Dyskinesia, Drug Induced,Dyskinesia, Medication Induced,Dyskinesias, Drug-Induced,Dyskinesias, Medication-Induced,Medication Induced Dyskinesia,Medication-Induced Dyskinesias
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000978 Antiparkinson Agents Agents used in the treatment of Parkinson's disease. The most commonly used drugs act on the dopaminergic system in the striatum and basal ganglia or are centrally acting muscarinic antagonists. Antiparkinson Drugs,Antiparkinsonian Agents,Antiparkinsonians,Agents, Antiparkinson,Agents, Antiparkinsonian,Drugs, Antiparkinson
D001578 Benzopyrans Compounds with a core of fused benzo-pyran rings. Benzopyran,Chromene,Chromenes

Related Publications

Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
January 2009, Behavioural brain research,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
January 2016, Drug design, development and therapy,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
January 2012, PloS one,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
March 2016, Pharmacology, biochemistry, and behavior,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
October 2014, European journal of pharmacology,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
March 2006, Journal of neurochemistry,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
September 2012, The European journal of neuroscience,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
December 2022, Experimental neurology,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
December 2019, Neurochemistry international,
Flora Mela, and Mark J Millan, and Mauricette Brocco, and Michele Morari
September 2010, Neurobiology of disease,
Copied contents to your clipboard!