Development of neurotransmitter phenotypes in sympathetic neurons. 2009

Galina Apostolova, and Georg Dechant
Institute for Neuroscience, Innsbruck Medical University, MZA, Austria. galina.apostolova@i-med.ac.at

This review summarizes the current understanding of neurotransmitter phenotype specification of postganglionic sympathetic neurons, focusing, in particular, on the cellular processes of induction versus trans-differentiation. The emerging evidence is discussed that the noradrenergic and cholinergic neurotransmitter phenotypes are co-induced during early development and that the mature phenotypes develop by positive and negative selection of cellular properties in initially bimodal neurons, depending on extracellular signals during migration and after target contact.

UI MeSH Term Description Entries
D008818 Mice, Neurologic Mutants Mice which carry mutant genes for neurologic defects or abnormalities. Lurcher Mice,Nervous Mice,Reeler Mice,Staggerer Mice,Weaver Mice,Chakragati Mice,Chakragati Mouse,Lurcher Mouse,Mice, Neurological Mutants,Mouse, Neurologic Mutant,Mouse, Neurological Mutant,Nervous Mouse,Neurologic Mutant Mice,Neurological Mutant Mouse,Reeler Mouse,Staggerer Mouse,Weaver Mouse,ckr Mutant Mice,Mice, Chakragati,Mice, Lurcher,Mice, Nervous,Mice, Neurologic Mutant,Mice, Reeler,Mice, Staggerer,Mice, Weaver,Mice, ckr Mutant,Mouse, Chakragati,Mouse, Lurcher,Mouse, Nervous,Mouse, Reeler,Mouse, Staggerer,Mouse, Weaver,Mutant Mice, Neurologic,Mutant Mice, ckr,Mutant Mouse, Neurologic,Neurologic Mutant Mouse
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009419 Nerve Tissue Proteins Proteins, Nerve Tissue,Tissue Proteins, Nerve
D009432 Neural Crest The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE. Neural Crest Cells,Neural Fold,Neural Groove,Cell, Neural Crest,Cells, Neural Crest,Crest, Neural,Crests, Neural,Fold, Neural,Folds, Neural,Groove, Neural,Grooves, Neural,Neural Crest Cell,Neural Crests,Neural Folds,Neural Grooves
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D000320 Adrenergic Fibers Nerve fibers liberating catecholamines at a synapse after an impulse. Sympathetic Fibers,Adrenergic Fiber,Fiber, Adrenergic,Fiber, Sympathetic,Fibers, Adrenergic,Fibers, Sympathetic,Sympathetic Fiber
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Galina Apostolova, and Georg Dechant
January 1998, Advances in pharmacology (San Diego, Calif.),
Galina Apostolova, and Georg Dechant
January 1994, Progress in brain research,
Galina Apostolova, and Georg Dechant
September 1999, Cell and tissue research,
Galina Apostolova, and Georg Dechant
January 2017, Advances in gerontology = Uspekhi gerontologii,
Galina Apostolova, and Georg Dechant
June 1994, Journal of neurobiology,
Galina Apostolova, and Georg Dechant
January 2016, Advances in gerontology = Uspekhi gerontologii,
Galina Apostolova, and Georg Dechant
August 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Galina Apostolova, and Georg Dechant
January 1979, Progress in brain research,
Galina Apostolova, and Georg Dechant
December 1985, Brain research,
Galina Apostolova, and Georg Dechant
March 1982, Science (New York, N.Y.),
Copied contents to your clipboard!