Deletion of putative intronic control sequences does not alter cell or stage specific expression of Cr2. 2009

Kirstin M Roundy, and Janis J Weis, and John H Weis
The Division of Cell Biology and Immunology, Department of Pathology, 15 North Medical Drive East, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, United States.

The expression of the mouse Cr2 gene has been shown to be restricted to mature B cells, follicular dendritic cells and, in some reports, to a minor population of activated T cells. In this report, we demonstrate that the expression of antigen(s) recognized by the anti-CR2 antibody on the surface of T cells is co-incident with T cell apoptotic death. Two distinct regions of the Cr2 gene have been implicated as critical for specific expression, the promoter region at the transcription start site and a control region within the first intron of the gene, approximately 1500 bp from the transcription start site. We have created a mouse that is lacking this intronic control sequence which, in the wild type (WT) mouse, contains multiple known binding sites for RBP-jkappa, Oct, NFAT and YY1 proteins. The analysis of this mouse named Cr2iDelta (Cr2 intron deletion) demonstrated normal tissue specific expression of the Cr2 gene including a lack of expression in mouse T cells. B cell expression of the Cr2 gene products, CR1 and CR2, is normal compared to WT, and the FDC of these mice continue to express Cr2 gene products. Therefore the intronic control region of the Cr2 gene, defined in transfection-based reporter gene assays as instrumental in controlling the cell specific expression profile of Cr2, does not influence the expression of the Cr2 gene in vivo nor alter the relative production of the CR1 and CR2 proteins via alternative slicing of Cr2 gene products.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D012045 Regulatory Sequences, Nucleic Acid Nucleic acid sequences involved in regulating the expression of genes. Nucleic Acid Regulatory Sequences,Regulatory Regions, Nucleic Acid (Genetics),Region, Regulatory,Regions, Regulatory,Regulator Regions, Nucleic Acid,Regulatory Region,Regulatory Regions
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001402 B-Lymphocytes Lymphoid cells concerned with humoral immunity. They are short-lived cells resembling bursa-derived lymphocytes of birds in their production of immunoglobulin upon appropriate stimulation. B-Cells, Lymphocyte,B-Lymphocyte,Bursa-Dependent Lymphocytes,B Cells, Lymphocyte,B Lymphocyte,B Lymphocytes,B-Cell, Lymphocyte,Bursa Dependent Lymphocytes,Bursa-Dependent Lymphocyte,Lymphocyte B-Cell,Lymphocyte B-Cells,Lymphocyte, Bursa-Dependent,Lymphocytes, Bursa-Dependent
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013601 T-Lymphocytes Lymphocytes responsible for cell-mediated immunity. Two types have been identified - cytotoxic (T-LYMPHOCYTES, CYTOTOXIC) and helper T-lymphocytes (T-LYMPHOCYTES, HELPER-INDUCER). They are formed when lymphocytes circulate through the THYMUS GLAND and differentiate to thymocytes. When exposed to an antigen, they divide rapidly and produce large numbers of new T cells sensitized to that antigen. T Cell,T Lymphocyte,T-Cells,Thymus-Dependent Lymphocytes,Cell, T,Cells, T,Lymphocyte, T,Lymphocyte, Thymus-Dependent,Lymphocytes, T,Lymphocytes, Thymus-Dependent,T Cells,T Lymphocytes,T-Cell,T-Lymphocyte,Thymus Dependent Lymphocytes,Thymus-Dependent Lymphocyte
D016923 Cell Death The termination of the cell's ability to carry out vital functions such as metabolism, growth, reproduction, responsiveness, and adaptability. Death, Cell

Related Publications

Kirstin M Roundy, and Janis J Weis, and John H Weis
March 2023, Cell death & disease,
Kirstin M Roundy, and Janis J Weis, and John H Weis
February 1998, Journal of immunology (Baltimore, Md. : 1950),
Kirstin M Roundy, and Janis J Weis, and John H Weis
January 2000, Tubercle and lung disease : the official journal of the International Union against Tuberculosis and Lung Disease,
Kirstin M Roundy, and Janis J Weis, and John H Weis
November 1999, Journal of neurochemistry,
Kirstin M Roundy, and Janis J Weis, and John H Weis
January 2018, The International journal of developmental biology,
Kirstin M Roundy, and Janis J Weis, and John H Weis
July 2021, Viruses,
Kirstin M Roundy, and Janis J Weis, and John H Weis
August 2011, Metabolism: clinical and experimental,
Copied contents to your clipboard!