Prostaglandin synthesis elicited by adrenergic stimuli in rabbit aorta is mediated via alpha-1 and alpha-2 adrenergic receptors. 1990

C Nebigil, and K U Malik
Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis.

The purpose of this study was to characterize the type of adrenergic receptor(s) involved in both prostaglandin (PG) synthesis and the contractile response elicited by adrenergic receptor agonists in the rabbit aorta. The synthesis of prostacyclin as measured by the production of 6-keto-PGF1 alpha was assessed in vitro after exposing the aortic rings to different adrenergic agonists. Norepinephrine (NE), selective alpha 1 adrenergic receptor agonists methoxamine (MET), phenylephrine (PHE) and cirazoline (CIR) and the alpha 2 adrenergic receptor agonists UK 14304 (UK) and xylazine (XYL), but not the beta adrenergic receptor agonist isoproterenol (ISP), enhanced 6-keto-PGF1 alpha synthesis in a concentration-dependent manner with following order of potency: NE greater than UK 14304 greater than XYL greater than PHE greater than MET greater than CIR. The NE-induced increased in 6-keto-PGF1 alpha synthesis was attenuated by the alpha 1 adrenergic receptor antagonists prazosin (PZ) and corynanthine (COR) and by the alpha 2 adrenergic receptor antagonists rauwolscine (RW) and yohimbine (YOH). MET-induced 6-keto-PGF1 alpha synthesis was reduced by PZ and COR but not by RW. UK-induced 6-keto-PGF1 alpha synthesis was reduced by RW, YOH, and PZ, which also acts as alpha-2B receptor antagonist, but not by COR. In rabbit aortic rings, adrenergic agonists produced contraction with the following order of potency: NE greater than PHE greater than MET greater than CIR greater than UK greater than XYL.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D011942 Receptors, Adrenergic, alpha One of the two major pharmacological subdivisions of adrenergic receptors that were originally defined by the relative potencies of various adrenergic compounds. The alpha receptors were initially described as excitatory receptors that post-junctionally stimulate SMOOTH MUSCLE contraction. However, further analysis has revealed a more complex picture involving several alpha receptor subtypes and their involvement in feedback regulation. Adrenergic alpha-Receptor,Adrenergic alpha-Receptors,Receptors, alpha-Adrenergic,alpha-Adrenergic Receptor,alpha-Adrenergic Receptors,Receptor, Adrenergic, alpha,Adrenergic alpha Receptor,Adrenergic alpha Receptors,Receptor, alpha-Adrenergic,Receptors, alpha Adrenergic,alpha Adrenergic Receptor,alpha Adrenergic Receptors,alpha-Receptor, Adrenergic,alpha-Receptors, Adrenergic
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000316 Adrenergic alpha-Agonists Drugs that selectively bind to and activate alpha adrenergic receptors. Adrenergic alpha-Receptor Agonists,alpha-Adrenergic Receptor Agonists,Adrenergic alpha-Agonist,Adrenergic alpha-Receptor Agonist,Receptor Agonists, Adrenergic alpha,Receptor Agonists, alpha-Adrenergic,alpha-Adrenergic Agonist,alpha-Adrenergic Agonists,alpha-Adrenergic Receptor Agonist,Adrenergic alpha Agonist,Adrenergic alpha Agonists,Adrenergic alpha Receptor Agonist,Adrenergic alpha Receptor Agonists,Agonist, Adrenergic alpha-Receptor,Agonist, alpha-Adrenergic,Agonist, alpha-Adrenergic Receptor,Agonists, Adrenergic alpha-Receptor,Agonists, alpha-Adrenergic,Agonists, alpha-Adrenergic Receptor,Receptor Agonist, alpha-Adrenergic,Receptor Agonists, alpha Adrenergic,alpha Adrenergic Agonist,alpha Adrenergic Agonists,alpha Adrenergic Receptor Agonist,alpha Adrenergic Receptor Agonists,alpha-Agonist, Adrenergic,alpha-Agonists, Adrenergic,alpha-Receptor Agonist, Adrenergic,alpha-Receptor Agonists, Adrenergic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001011 Aorta The main trunk of the systemic arteries. Aortas
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D015121 6-Ketoprostaglandin F1 alpha The physiologically active and stable hydrolysis product of EPOPROSTENOL. Found in nearly all mammalian tissue. 6-Keto-PGF1 alpha,6-Oxo-PGF1 alpha,6-Oxoprostaglandin F1 alpha,6 Ketoprostaglandin F1 alpha,6 Keto PGF1 alpha,6 Oxo PGF1 alpha,6 Oxoprostaglandin F1 alpha,F1 alpha, 6-Ketoprostaglandin,F1 alpha, 6-Oxoprostaglandin,alpha, 6-Keto-PGF1,alpha, 6-Ketoprostaglandin F1,alpha, 6-Oxo-PGF1,alpha, 6-Oxoprostaglandin F1

Related Publications

C Nebigil, and K U Malik
April 1988, The Journal of pharmacology and experimental therapeutics,
C Nebigil, and K U Malik
August 1986, Journal of endocrinological investigation,
C Nebigil, and K U Malik
March 2004, Journal of cardiovascular pharmacology,
C Nebigil, and K U Malik
July 1989, Journal of applied physiology (Bethesda, Md. : 1985),
Copied contents to your clipboard!