| D008959 |
Models, Neurological |
Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. |
Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic |
|
| D010775 |
Photic Stimulation |
Investigative technique commonly used during ELECTROENCEPHALOGRAPHY in which a series of bright light flashes or visual patterns are used to elicit brain activity. |
Stimulation, Photic,Visual Stimulation,Photic Stimulations,Stimulation, Visual,Stimulations, Photic,Stimulations, Visual,Visual Stimulations |
|
| D002138 |
Calibration |
Determination, by measurement or comparison with a standard, of the correct value of each scale reading on a meter or other measuring instrument; or determination of the settings of a control device that correspond to particular values of voltage, current, frequency or other output. |
Calibrations |
|
| D004596 |
Electroretinography |
Recording of electric potentials in the retina after stimulation by light. |
Electroretinographies |
|
| D005425 |
Flicker Fusion |
The point or frequency at which all flicker of an intermittent light stimulus disappears. |
Flicker Fusions,Fusion, Flicker,Fusions, Flicker |
|
| D006801 |
Humans |
Members of the species Homo sapiens. |
Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man |
|
| D000221 |
Adaptation, Ocular |
The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) |
Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations |
|
| D017948 |
Retinal Rod Photoreceptor Cells |
Photosensitive afferent neurons located in the peripheral retina, with their density increases radially away from the FOVEA CENTRALIS. Being much more sensitive to light than the RETINAL CONE CELLS, the rod cells are responsible for twilight vision (at scotopic intensities) as well as peripheral vision, but provide no color discrimination. |
Photoreceptors, Rod,Retinal Rod Cells,Rod Photoreceptors,Rods (Retina),Retinal Rod,Retinal Rod Cell,Retinal Rod Photoreceptor,Retinal Rod Photoreceptors,Rod Photoreceptor Cells,Cell, Retinal Rod,Cell, Rod Photoreceptor,Cells, Retinal Rod,Cells, Rod Photoreceptor,Photoreceptor Cell, Rod,Photoreceptor Cells, Rod,Photoreceptor, Retinal Rod,Photoreceptor, Rod,Photoreceptors, Retinal Rod,Retinal Rods,Rod (Retina),Rod Cell, Retinal,Rod Cells, Retinal,Rod Photoreceptor,Rod Photoreceptor Cell,Rod Photoreceptor, Retinal,Rod Photoreceptors, Retinal,Rod, Retinal,Rods, Retinal |
|
| D017949 |
Retinal Cone Photoreceptor Cells |
Photosensitive afferent neurons located primarily within the FOVEA CENTRALIS of the MACULA LUTEA. There are three major types of cone cells (red, blue, and green) whose photopigments have different spectral sensitivity curves. Retinal cone cells operate in daylight vision (at photopic intensities) providing color recognition and central visual acuity. |
Cone Photoreceptors,Cones (Retina),Cone Photoreceptor Cells,Photoreceptors, Cone,Retinal Cone,Retinal Cone Cells,Retinal Cone Photoreceptors,Cell, Cone Photoreceptor,Cell, Retinal Cone,Cells, Cone Photoreceptor,Cells, Retinal Cone,Cone (Retina),Cone Cell, Retinal,Cone Cells, Retinal,Cone Photoreceptor,Cone Photoreceptor Cell,Cone Photoreceptor, Retinal,Cone Photoreceptors, Retinal,Cone, Retinal,Cones, Retinal,Photoreceptor Cell, Cone,Photoreceptor Cells, Cone,Photoreceptor, Cone,Photoreceptor, Retinal Cone,Photoreceptors, Retinal Cone,Retinal Cone Cell,Retinal Cone Photoreceptor,Retinal Cones |
|