Veratridine and other depolarizing agents counteract the inhibitory effect of Mg2+ ions on N-methyl-D-aspartate (NMDA)-induced noradrenaline release in vitro. 1990

K Fink, and M Göthert, and E Schlicker
Institut für Pharmakologie und Toxikologie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Federal Republic of Germany.

Rat brain cortex slices preincubated with 3H-noradrenaline were superfused with Krebs-Henseleit solution with or without Mg2+. In the absence of Mg2+ ions, NMDA evoked 3H-noradrenaline overflow above basal efflux; this effect was concentration-dependently inhibited by Mg2+ (IC50: 19 mumol/l). Despite the presence of 1.2 mmol/l Mg2+, which is known to block cation influx through the ion channel coupled to the NMDA receptor, NMDA evoked 3H-noradrenaline release if the membrane was permanently kept depolarized by 20 or 25 mmol/l K+, 1 mumol/l veratridine or 200 mumol/1 3,4-diaminopyridine; the stimulant effect of NMDA was counteracted by 2-amino-5-phosphonovaleric acid (2-APV), a competitive antagonist at the NMDA receptor and by (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohept-5,10-imine hydrogen maleate (MK 801), an antagonist acting at the cation channel associated with the NMDA receptor. In contrast, no stimulatory effect of NMDA in the presence of 1.2 mmol/l Mg2+ was observed when the membrane of the nerve terminals was intermittently depolarized by electrical impulses of 2 ms duration at a frequency of 1-3 Hz. It is concluded that continuous depolarization of the nerve membrane counteracts the blocking effect of Mg2+ on cation influx through the NMDA receptor-associated ion channel. Under this condition, noradrenaline release can be stimulated by NMDA receptor activation even in the presence of physiological Mg2+ concentrations.

UI MeSH Term Description Entries
D008274 Magnesium A metallic element that has the atomic symbol Mg, atomic number 12, and atomic weight 24.31. It is important for the activity of many enzymes, especially those involved in OXIDATIVE PHOSPHORYLATION.
D008297 Male Males
D009467 Neuromuscular Depolarizing Agents Drugs that interrupt transmission at the skeletal neuromuscular junction by causing sustained depolarization of the motor end plate. These agents are primarily used as adjuvants in surgical anesthesia to cause skeletal muscle relaxation. Depolarizing Muscle Relaxants,Muscle Relaxants, Depolarizing,Depolarizing Blockers,Agents, Neuromuscular Depolarizing,Blockers, Depolarizing,Depolarizing Agents, Neuromuscular,Relaxants, Depolarizing Muscle
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003986 Dibenzocycloheptenes A family of tricyclic hydrocarbons whose members include many of the commonly used tricyclic antidepressants (ANTIDEPRESSIVE AGENTS, TRICYCLIC).
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D006859 Hydrogen The first chemical element in the periodic table with atomic symbol H, and atomic number 1. Protium (atomic weight 1) is by far the most common hydrogen isotope. Hydrogen also exists as the stable isotope DEUTERIUM (atomic weight 2) and the radioactive isotope TRITIUM (atomic weight 3). Hydrogen forms into a diatomic molecule at room temperature and appears as a highly flammable colorless and odorless gas. Protium,Hydrogen-1
D000077770 Amifampridine 4-Aminopyridine derivative that acts as a POTASSIUM CHANNEL blocker to increase release of ACETYLCHOLINE from nerve terminals. It is used in the treatment of CONGENITAL MYASTHENIC SYNDROMES. Ruzurgi,3,4-Diaminopyridine,Amifampridine Phosphate,Firdapse,3,4 Diaminopyridine

Related Publications

K Fink, and M Göthert, and E Schlicker
May 1996, Biochemical Society transactions,
K Fink, and M Göthert, and E Schlicker
November 1996, Brain research,
K Fink, and M Göthert, and E Schlicker
February 1992, Brain research. Developmental brain research,
K Fink, and M Göthert, and E Schlicker
September 1999, Investigative ophthalmology & visual science,
K Fink, and M Göthert, and E Schlicker
January 2003, Physiological research,
K Fink, and M Göthert, and E Schlicker
November 1992, Research communications in chemical pathology and pharmacology,
K Fink, and M Göthert, and E Schlicker
November 1996, Masui. The Japanese journal of anesthesiology,
K Fink, and M Göthert, and E Schlicker
February 1995, Biological & pharmaceutical bulletin,
K Fink, and M Göthert, and E Schlicker
October 2000, Experimental eye research,
Copied contents to your clipboard!