Effects of low versus physiologic plasma progesterone concentrations on ovarian follicular development and fertility in beef cattle. 2009

L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
University of Saskatchewan, Saskatoon, SK, Canada.

The objective of this study was to determine the effects of low versus physiologic plasma progesterone concentrations during the ovulatory wave on fertility in cattle. Suckled beef cows (Bos taurus; n=129) and pubertal heifers (Bos taurus; n=150) at random stages of the estrous cycle were given a luteolytic dose of prostaglandin F(2 alpha) (500 microg cloprostenol; PGF) twice, 11 d apart. Ten days after the second PGF treatment, cattle were given estradiol benzoate im (1.5 and 1.0mg for cows and heifers, respectively) and a progesterone-releasing intravaginal device (Cue-Mate) with a single pod containing 0.78 g progesterone (Day 0). Cattle in the low-progesterone group (n = 148) received a luteolytic dose of PGF on Day 0, whereas those in the high-progesterone (i.e., physiologic plasma concentrations) group (n=131) were allowed to retain their corpora lutea. On Day 8, the Cue-Mate was removed, and PGF was given to both groups. Fifty-four hours to 56 h later, cattle received 12.5mg of porcine LH (pLH) im and were concurrently artificially inseminated. The dominant follicle in the low-progesterone group was larger (P<0.001) than that in the high-progesterone group on the day of insemination (14.9+/-0.3mm vs. 12.7+/-0.3mm, mean+/-SEM). At 7 d after ovulation, the low-progesterone group had a larger corpus luteum (24.5+/-0.54 mm vs. 21.9+/-0.64 mm, P<0.01) and higher plasma progesterone concentration (4.0+/-0.3 vs. 3.1+/-0.2, P<0.01) than that of the high-progesterone group. However, pregnancy rates did not differ (79 of 148, 53.4%, and 70 of 131, 53.4%) for low- and high-progesterone groups, respectively). In summary, low circulating progesterone concentrations during the growing phase of the ovulatory follicle resulted in a larger dominant follicle and a larger CL that produced more progesterone, with no significant effect on pregnancy rate.

UI MeSH Term Description Entries
D007315 Insemination, Artificial Artificial introduction of SEMEN or SPERMATOZOA into the VAGINA to facilitate FERTILIZATION. Artificial Insemination,Eutelegenesis,Artificial Inseminations,Eutelegeneses,Inseminations, Artificial
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D010062 Ovulation Induction Techniques for the artifical induction of ovulation, the rupture of the follicle and release of the ovum. Ovarian Stimulation,Ovarian Stimulations,Stimulation, Ovarian,Stimulations, Ovarian
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011374 Progesterone The major progestational steroid that is secreted primarily by the CORPUS LUTEUM and the PLACENTA. Progesterone acts on the UTERUS, the MAMMARY GLANDS and the BRAIN. It is required in EMBRYO IMPLANTATION; PREGNANCY maintenance, and the development of mammary tissue for MILK production. Progesterone, converted from PREGNENOLONE, also serves as an intermediate in the biosynthesis of GONADAL STEROID HORMONES and adrenal CORTICOSTEROIDS. Pregnenedione,Progesterone, (13 alpha,17 alpha)-(+-)-Isomer,Progesterone, (17 alpha)-Isomer,Progesterone, (9 beta,10 alpha)-Isomer
D001800 Blood Specimen Collection The taking of a blood sample to determine its character as a whole, to identify levels of its component cells, chemicals, gases, or other constituents, to perform pathological examination, etc. Blood Specimen Collections,Collection, Blood Specimen,Collections, Blood Specimen,Specimen Collection, Blood,Specimen Collections, Blood
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D004973 Estrus Synchronization Occurrence or induction of ESTRUS in all of the females in a group at the same time, applies only to non-primate mammals with ESTROUS CYCLE. Estrus Synchronizations,Synchronization, Estrus,Synchronizations, Estrus
D005260 Female Females

Related Publications

L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
May 1993, Journal of reproduction and fertility,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
January 2008, Domestic animal endocrinology,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
September 2018, Animal reproduction science,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
September 2018, Animal reproduction science,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
February 2017, Journal of animal science,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
May 1993, Journal of reproduction and fertility,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
January 2007, The Canadian veterinary journal = La revue veterinaire canadienne,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
December 1979, Berliner und Munchener tierarztliche Wochenschrift,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
January 1996, Domestic animal endocrinology,
L F M Pfeifer, and R J Mapletoft, and J P Kastelic, and J A Small, and G P Adams, and N J Dionello, and J Singh
July 2016, Journal of dairy science,
Copied contents to your clipboard!