Internal noise-driven circadian oscillator in Drosophila. 2009

Qianshu Li, and Hengyu Li
The Institute for Chemical Physics, Beijing Institute of Technology, Beijing, 100081, China. qsli@bit.edu.cn

An internal noise-driven oscillator was studied in a two-variable Drosophila model, where both positive feedback and negative feedback are crucial to the circadian oscillations. It is shown that internal noise could sustain reliable oscillations for the parameter which produces a stable steady state in the deterministic system. The noise-sustained oscillations are interpreted by using phase plane analysis. The period of such oscillations fluctuates slightly around the period of deterministic oscillations and the coherence of oscillations becomes the best at an optimal internal noise intensity, indicating the occurrence of intrinsic coherence resonance. In addition, in the oscillatory region, the coherence of noisy circadian oscillations is suppressed by the internal noise, but the period is hardly affected, demonstrating the robustness of the Drosophila model for circadian rhythms to the intrinsic noise.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013269 Stochastic Processes Processes that incorporate some element of randomness, used particularly to refer to a time series of random variables. Process, Stochastic,Stochastic Process,Processes, Stochastic

Related Publications

Qianshu Li, and Hengyu Li
May 1986, Physical review. A, General physics,
Qianshu Li, and Hengyu Li
April 2006, Journal of biological rhythms,
Qianshu Li, and Hengyu Li
October 1999, Science (New York, N.Y.),
Qianshu Li, and Hengyu Li
March 2003, Nature neuroscience,
Qianshu Li, and Hengyu Li
October 2017, Physical review. E,
Qianshu Li, and Hengyu Li
December 2008, Journal of biological rhythms,
Qianshu Li, and Hengyu Li
October 2014, Proceedings. Biological sciences,
Qianshu Li, and Hengyu Li
October 2003, Current biology : CB,
Copied contents to your clipboard!