Additive effects of a steroidal implant and zilpaterol hydrochloride on feedlot performance, carcass characteristics, and skeletal muscle messenger ribonucleic acid abundance in finishing steers. 2010

T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506, USA.

This experiment investigated the effects of zilpaterol hydrochloride (ZH) and the steroidal implant Revalor-S (RS; 120 mg of trenbolone acetate and 24 mg of estradiol-17beta) on finishing steer performance and the mRNA concentration of beta-adrenergic receptors (beta-AR) types I and II, and types I, IIA, and IIX myosin heavy chain (MHC) isoforms. A total of 2,279 feedlot steers weighing 426 +/- 6.4 kg were administered no implant or RS on d 0, and fed 0 or 8.3 mg of ZH/kg of diet DM during the last 30 d with a 3-d withdrawal. Treatments were randomly assigned to 24 pens (n = 6 pens/treatment). At slaughter, semimembranosus muscle tissue was excised for RNA isolation from 4 carcasses per pen. No interactions were detected for any of the variables measured in the experiment. Administration of ZH during the last 30 d of the feeding period increased (P < 0.01) ADG, G:F, HCW, and LM area; decreased (P < 0.01) 12th-rib fat depth and marbling; and improved (P < 0.01) yield grade. Treatment had no effect on beta1-AR mRNA levels, but there was an increase (P = 0.01) in beta(2)-AR mRNA levels due to ZH inclusion. Myosin heavy chain-I (MHC-I) mRNA levels were unaffected by treatment. For MHC-IIA mRNA concentrations, administration of RS tended (P = 0.08) to increase mRNA levels, whereas ZH feeding the last 30 d tended (P = 0.08) to decrease mRNA levels for this isoform of myosin. Feeding ZH the last 30 d before slaughter increased (P < 0.01) mRNA concentrations of MHC-IIX in semimembranosus muscle of steers. These data indicate the combined use of ZH and RS additively contributes to BW and carcass gain in finishing feedlot steers and decreases marbling scores and USDA quality grades. The LM area increased and fat thickness decreased. In addition, ZH feeding changes the mRNA levels of MHC isoforms to a faster, more glycolytic fiber type in bovine skeletal muscle. These changes in mRNA concentrations of MHC isoforms, due to ZH feeding, could be affecting skeletal muscle hypertrophy.

UI MeSH Term Description Entries
D008297 Male Males
D009124 Muscle Proteins The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN. Muscle Protein,Protein, Muscle,Proteins, Muscle
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D004338 Drug Combinations Single preparations containing two or more active agents, for the purpose of their concurrent administration as a fixed dose mixture. Drug Combination,Combination, Drug,Combinations, Drug
D004343 Drug Implants Small containers or pellets of a solid drug implanted in the body to achieve sustained release of the drug. Drug Implant,Drug Pellet,Pellets, Drug,Drug Pellets,Implant, Drug,Implants, Drug,Pellet, Drug
D004359 Drug Therapy, Combination Therapy with two or more separate preparations given for a combined effect. Combination Chemotherapy,Polychemotherapy,Chemotherapy, Combination,Combination Drug Therapy,Drug Polytherapy,Therapy, Combination Drug,Chemotherapies, Combination,Combination Chemotherapies,Combination Drug Therapies,Drug Polytherapies,Drug Therapies, Combination,Polychemotherapies,Polytherapies, Drug,Polytherapy, Drug,Therapies, Combination Drug
D004958 Estradiol The 17-beta-isomer of estradiol, an aromatized C18 steroid with hydroxyl group at 3-beta- and 17-beta-position. Estradiol-17-beta is the most potent form of mammalian estrogenic steroids. 17 beta-Estradiol,Estradiol-17 beta,Oestradiol,17 beta-Oestradiol,Aerodiol,Delestrogen,Estrace,Estraderm TTS,Estradiol Anhydrous,Estradiol Hemihydrate,Estradiol Hemihydrate, (17 alpha)-Isomer,Estradiol Monohydrate,Estradiol Valerate,Estradiol Valeriante,Estradiol, (+-)-Isomer,Estradiol, (-)-Isomer,Estradiol, (16 alpha,17 alpha)-Isomer,Estradiol, (16 alpha,17 beta)-Isomer,Estradiol, (17-alpha)-Isomer,Estradiol, (8 alpha,17 beta)-(+-)-Isomer,Estradiol, (8 alpha,17 beta)-Isomer,Estradiol, (9 beta,17 alpha)-Isomer,Estradiol, (9 beta,17 beta)-Isomer,Estradiol, Monosodium Salt,Estradiol, Sodium Salt,Estradiol-17 alpha,Estradiol-17beta,Ovocyclin,Progynon-Depot,Progynova,Vivelle,17 beta Estradiol,17 beta Oestradiol,Estradiol 17 alpha,Estradiol 17 beta,Estradiol 17beta,Progynon Depot
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
September 2015, Journal of animal science,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
December 2016, Journal of animal science,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
May 2015, Journal of animal science,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
September 2012, Journal of animal science,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
April 2009, Journal of animal science,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
May 2010, Journal of animal science,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
March 2009, Journal of animal science,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
January 2010, Journal of animal science,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
January 2016, Asian-Australasian journal of animal sciences,
T J Baxa, and J P Hutcheson, and M F Miller, and J C Brooks, and W T Nichols, and M N Streeter, and D A Yates, and B J Johnson
February 2011, Journal of animal science,
Copied contents to your clipboard!