Phosphorylation of the v-erbA protein is required for its function as an oncogene. 1990

C Glineur, and M Zenke, and H Beug, and J Ghysdael
Institut National de la Santé et de la Recherche Médicale U 186, Institut Pasteur, Lille, France.

The v-erbA oncogene of avian erythroblastosis virus (AEV) encodes a ligand-independent mutated version of the chicken c-erbA alpha-encoded thyroid hormone receptor. The v-erbA gene product, a 75-kD gag/v-erbA fusion protein, is phosphorylated on Ser-16/17 of its v-erbA-encoded domain, and phosphorylation at this site is increased in vivo after activation of either the PKA or PKC signal transduction pathways. To test the hypothesis that phosphorylation of Ser-16/17 regulates gag/v-erbA protein function, mutant proteins in which Ser-16/17 had been changed to alanine or threonine residues were analyzed for their ability to inhibit erythroid differentiation of ts v-erbB or ts v-sea-transformed erythroblasts at nonpermissive temperature. Conversion of Ser-16/17 into alanine, although not affecting nuclear localization or DNA binding of the gag/erbA protein, prevented phosphorylation of the v-erbA-encoded domain of the protein both in unstimulated cells or after stimulation by PKA and PKC activators. The nonphosphorylatable AA-gag/v-erbA protein proved unable to inhibit temperature-induced differentiation of ts v-erbB and ts v-sea-transformed erythroblasts and to block expression of the erythrocyte-specific genes band 3 and carbonic anhydrase II. Back mutation of these alanine residues to serine resulted in the recovery of both normal phosphorylation levels and wild-type biological activity. In contrast, substitution of Ser-16/17 for threonine, which preserved phosphorylation in unstimulated cells but not PKA- and PKC-enhanced phosphorylation, resulted in a partially active gag/v-erbA protein. These results, together with the fact that the protein kinase inhibitor H7 resulted in both a dose-dependent inhibition of gag/v-erbA protein phosphorylation and the induction of terminal differentiation of AEV-transformed erythroblasts show that phosphorylation of gag/v-erbA protein is required for full biological activity. These results support the hypothesis that phosphorylation of the gag/v-erbA protein is important for transcriptional repression of at least some of its target genes in erythroid cells.

UI MeSH Term Description Entries
D007546 Isoquinolines A group of compounds with the heterocyclic ring structure of benzo(c)pyridine. The ring structure is characteristic of the group of opium alkaloids such as papaverine. (From Stedman, 25th ed)
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009857 Oncogenes Genes whose gain-of-function alterations lead to NEOPLASTIC CELL TRANSFORMATION. They include, for example, genes for activators or stimulators of CELL PROLIFERATION such as growth factors, growth factor receptors, protein kinases, signal transducers, nuclear phosphoproteins, and transcription factors. A prefix of "v-" before oncogene symbols indicates oncogenes captured and transmitted by RETROVIRUSES; the prefix "c-" before the gene symbol of an oncogene indicates it is the cellular homolog (PROTO-ONCOGENES) of a v-oncogene. Transforming Genes,Oncogene,Transforming Gene,Gene, Transforming,Genes, Transforming
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D010879 Piperazines Compounds that are derived from PIPERAZINE.
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004900 Erythroblasts Immature, nucleated ERYTHROCYTES occupying the stage of ERYTHROPOIESIS that follows formation of ERYTHROID PRECURSOR CELLS and precedes formation of RETICULOCYTES. The normal series is called normoblasts. Cells called MEGALOBLASTS are a pathologic series of erythroblasts. Erythrocytes, Nucleated,Normoblasts,Proerythroblasts,Pronormoblasts,Erythroblast,Erythrocyte, Nucleated,Normoblast,Nucleated Erythrocyte,Nucleated Erythrocytes,Proerythroblast,Pronormoblast
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle

Related Publications

C Glineur, and M Zenke, and H Beug, and J Ghysdael
October 1999, International journal of molecular medicine,
C Glineur, and M Zenke, and H Beug, and J Ghysdael
January 1989, International journal of cancer. Supplement = Journal international du cancer. Supplement,
C Glineur, and M Zenke, and H Beug, and J Ghysdael
October 1996, The Journal of biological chemistry,
C Glineur, and M Zenke, and H Beug, and J Ghysdael
September 1991, Cell,
C Glineur, and M Zenke, and H Beug, and J Ghysdael
June 1990, Cell,
C Glineur, and M Zenke, and H Beug, and J Ghysdael
March 1990, Journal of virology,
C Glineur, and M Zenke, and H Beug, and J Ghysdael
July 1987, European journal of biochemistry,
C Glineur, and M Zenke, and H Beug, and J Ghysdael
January 1991, Annales d'endocrinologie,
C Glineur, and M Zenke, and H Beug, and J Ghysdael
January 2002, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!