Wheat-germ agglutinin mimics metabolic effects of insulin without increasing receptor autophosphorylation. 1990

G Ponzio, and A Debant, and J O Contreres, and B Rossi
Unité INSERM 210, Faculté de Médecine, Nice, France.

Expression of insulin metabolic effects can be obtained by anti-receptor antibodies without activation of the tyrosine kinase activity [O'Brien R. M., Soos M. A. and Siddle K. (1987) EMBO J. 6, 4003-4010; Forsayeth J. R., Caro J. F., Sinha M. K., Maddux B. A. and Goldfine I. D. (1987) Proc. natn. Acad. Sci. U.S.A. 84, 34,448-34,514; Ponzio G., Contreres J. O., Debant A., Baron V., Gautier N., Dolais-Kitabgi J. and Rossi B. (1988) EMBO J. 7, 4111-4117; Hawley D. M., Maddux B. A., Patel R. G., Wong K. Y., Mamula P. W., Firestone G. L., Brunetti A., Verspohl E. and Goldfine I. D. (1989) J. biol. Chem. 264, 2438-2444; Soos M. A., O'Brien R. M., Brindle N. P. J., Stigter J. M., Okamoto A. K., Whittaker J. and Siddle K. (1989) Proc. natn. Acad. Sci. U.S.A. 86, 5217-5221.]. Recently, we have proposed that receptor cross-linking is sufficient in itself to stimulate glycogen synthesis, even if aggregation was performed on receptors mutated on Tyr 1162 and Tyr 1163 and thus devoid of tyrosine kinase activity [Debant A., Ponzio G., Clauser E., Contreres J. O. and Rossi B. (1989) Biochemistry 28, 14-17]. The aim of this study was to gain information on the involvement of receptor clustering in the expression of the different insulin biological effects. To this end, we studied the mimetic effects of wheat-germ agglutinin, which is likely to induce receptor aggregation without interacting with the receptor protein moiety. Wheat-germ agglutinin failed to promote DNA synthesis, whereas the lectin behaved as a potent mimicker of insulin on tyrosine aminotransferase activity and amino-acid transport. However, this stimulatory effect did not parallel the activation of receptor autophosphorylation. Our data reinforce the idea that the expression of the metabolic effects of insulin are not strictly dependent on a general tyrosine kinase activation.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011972 Receptor, Insulin A cell surface receptor for INSULIN. It comprises a tetramer of two alpha and two beta subunits which are derived from cleavage of a single precursor protein. The receptor contains an intrinsic TYROSINE KINASE domain that is located within the beta subunit. Activation of the receptor by INSULIN results in numerous metabolic changes including increased uptake of GLUCOSE into the liver, muscle, and ADIPOSE TISSUE. Insulin Receptor,Insulin Receptor Protein-Tyrosine Kinase,Insulin Receptor alpha Subunit,Insulin Receptor beta Subunit,Insulin Receptor alpha Chain,Insulin Receptor beta Chain,Insulin-Dependent Tyrosine Protein Kinase,Receptors, Insulin,Insulin Receptor Protein Tyrosine Kinase,Insulin Receptors
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D000621 Aminoisobutyric Acids A group of compounds that are derivatives of the amino acid 2-amino-2-methylpropanoic acid. Acids, Aminoisobutyric
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill
D014444 Tyrosine Transaminase An enzyme that catalyzes the conversion of L-TYROSINE and 2-oxoglutarate to 4-hydroxyphenylpyruvate and L-GLUTAMATE. It is a pyridoxal-phosphate protein. L-PHENYLALANINE is hydroxylated to L-tyrosine. The mitochondrial enzyme may be identical with ASPARTATE AMINOTRANSFERASES (EC 2.6.1.1.). Deficiency of this enzyme may cause type II Tyrosinemia (see TYROSINEMIAS). EC 2.6.1.5. Tyrosine Aminotransferase,Aminotransferase, Tyrosine,Transaminase, Tyrosine
D014909 Wheat Germ Agglutinins Lectins purified from the germinating seeds of common wheat (Triticum vulgare); these bind to certain carbohydrate moieties on cell surface glycoproteins and are used to identify certain cell populations and inhibit or promote some immunological or physiological activities. There are at least two isoforms of this lectin. Agglutinins, Wheat Germ,Lectins, Triticum Vulgare,Lectins, Wheat Germ,Triticum Vulgare Lectin,Triticum Vulgare Lectins,Wheat Germ Agglutinin,Wheat Germ Lectin,Wheat Germ Lectins,Wheat Germ Agglutinin Isolectin 1,Wheat Germ Agglutinin Isolectin 2,Agglutinin, Wheat Germ,Germ Agglutinin, Wheat,Germ Lectin, Wheat,Lectin, Triticum Vulgare,Lectin, Wheat Germ,Vulgare Lectin, Triticum

Related Publications

G Ponzio, and A Debant, and J O Contreres, and B Rossi
December 1981, Biochimica et biophysica acta,
G Ponzio, and A Debant, and J O Contreres, and B Rossi
March 1980, The American journal of physiology,
G Ponzio, and A Debant, and J O Contreres, and B Rossi
September 1977, Biochimica et biophysica acta,
G Ponzio, and A Debant, and J O Contreres, and B Rossi
January 1987, Neuropeptides,
G Ponzio, and A Debant, and J O Contreres, and B Rossi
April 2008, Biomacromolecules,
G Ponzio, and A Debant, and J O Contreres, and B Rossi
March 1982, The Journal of cell biology,
G Ponzio, and A Debant, and J O Contreres, and B Rossi
July 1974, Biochemical and biophysical research communications,
G Ponzio, and A Debant, and J O Contreres, and B Rossi
July 1979, European journal of biochemistry,
G Ponzio, and A Debant, and J O Contreres, and B Rossi
December 1983, The Journal of biological chemistry,
Copied contents to your clipboard!