Role of Ca2+ and prostaglandin in regulation of active Na+ transport in frog skin. 1990

H F Bjerregaard, and R Nielsen
Institute of Life Sciences and Chemistry, University of Roskilde, Denmark.

1. The role of prostaglandins and intracellular Ca2+ in regulation of active transepithelial sodium transport in frog skin were studied by examinations of effects of the calcium ionophore A23187 on short-circuit current (SCC) and intracellular voltage. 2. A23187 and arachidonic acid induced a marked increase in both SCC and prostaglandin E2 synthesis. 3. In indomethacin treated skins A23187 did not stimulate but on the contrary inhibited the basal SCC. 4. The A23187-induced increase in SCC was associated with a decrease in the fractional resistance of the apical membrane and a depolarization of the cells. 5. In skins pretreated with indomethacin, the A23187 induced inhibition of SCC coincided with a slight hyperpolarization of the cellular potential and an increase in fractional resistance of the apical membrane.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D011453 Prostaglandins A group of compounds derived from unsaturated 20-carbon fatty acids, primarily arachidonic acid, via the cyclooxygenase pathway. They are extremely potent mediators of a diverse group of physiological processes. Prostaglandin,Prostanoid,Prostanoids
D011894 Rana pipiens A highly variable species of the family Ranidae in Canada, the United States and Central America. It is the most widely used Anuran in biomedical research. Frog, Leopard,Leopard Frog,Lithobates pipiens,Frogs, Leopard,Leopard Frogs
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D005260 Female Females
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001693 Biological Transport, Active The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy. Active Transport,Uphill Transport,Active Biological Transport,Biologic Transport, Active,Transport, Active Biological,Active Biologic Transport,Transport, Active,Transport, Active Biologic,Transport, Uphill

Related Publications

H F Bjerregaard, and R Nielsen
August 1975, European journal of pharmacology,
H F Bjerregaard, and R Nielsen
October 1991, The American journal of physiology,
H F Bjerregaard, and R Nielsen
March 1972, Acta physiologica Scandinavica,
H F Bjerregaard, and R Nielsen
December 2001, The Journal of membrane biology,
H F Bjerregaard, and R Nielsen
May 1977, The Journal of general physiology,
H F Bjerregaard, and R Nielsen
April 1963, The Japanese journal of physiology,
H F Bjerregaard, and R Nielsen
May 1970, Comparative biochemistry and physiology,
H F Bjerregaard, and R Nielsen
December 1986, Pflugers Archiv : European journal of physiology,
H F Bjerregaard, and R Nielsen
January 2012, Doklady biological sciences : proceedings of the Academy of Sciences of the USSR, Biological sciences sections,
H F Bjerregaard, and R Nielsen
September 2012, The Journal of biological chemistry,
Copied contents to your clipboard!