Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. 1990

R Carpenter, and E S Coen
John Innes Institute, AFRC Institute of Plant Science Research, Norwich, UK.

To isolate and study genes controlling floral development, we have carried out a large-scale transposon-mutagenesis experiment in Antirrhinum majus. Ten independent floral homeotic mutations were obtained that could be divided into three classes, depending on whether they affect (1) the identity of organs within the same whorl; (2) the identity and sometimes also the number of whorls; and (3) the fate of the axillary meristem that normally gives rise to the flower. The classes of floral phenotypes suggest a model for the genetic control of primordium fate in which class 2 genes are proposed to act in overlapping pairs of adjacent whorls so that their combinations at different positions along the radius of the flower can specify the fate and number of whorls. These could interact with class 1 genes, which vary in their action along the vertical axis of the flower to generate bilateral symmetry. Both of these classes may be ultimately regulated by class 3 genes required for flower initiation. The similarity between some of the homeotic phenotypes with those of other species suggests that the mechanisms controlling whorl identity and number have been highly conserved in plant evolution. Many of the mutations obtained show somatic and germinal instability characteristic of transposon insertions, allowing the cell-autonomy of floral homeotic genes to be tested for the first time. In addition, we show that the deficiens (def) gene (class 2) acts throughout organ development, but its action may be different at various developmental stages, accounting for the intermediate phenotypes conferred by certain def alleles. Expression of def early in development is not necessary for its later expression, indicating that other genes act throughout the development of specific organs to maintain def expression. Direct evidence that the mutations obtained were caused by transposons came from molecular analysis of leaf or flower pigmentation mutants, indicating that isolation of the homeotic genes should now be possible.

UI MeSH Term Description Entries
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D005821 Genetic Techniques Chromosomal, biochemical, intracellular, and other methods used in the study of genetics. Genetic Technic,Genetic Technics,Genetic Technique,Technic, Genetic,Technics, Genetic,Technique, Genetic,Techniques, Genetic
D016296 Mutagenesis Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS. Mutageneses
D063245 Plant Development Processes orchestrated or driven by a plethora of genes, plant hormones, and inherent biological timing mechanisms facilitated by secondary molecules, which result in the systematic transformation of plants and plant parts, from one stage of maturity to another. Plant Morphogenesis,Development, Plant,Developments, Plant,Morphogeneses, Plant,Morphogenesis, Plant,Plant Developments,Plant Morphogeneses

Related Publications

R Carpenter, and E S Coen
November 1990, Science (New York, N.Y.),
R Carpenter, and E S Coen
October 1995, The Plant cell,
R Carpenter, and E S Coen
December 1994, Molecular & general genetics : MGG,
R Carpenter, and E S Coen
July 2001, Development (Cambridge, England),
R Carpenter, and E S Coen
January 1998, Development (Cambridge, England),
Copied contents to your clipboard!