Alpha 1 (but not alpha 2)-adrenoceptor agonists in combination with the dopamine D2 agonist quinpirole produce locomotor stimulation in dopamine-depleted mice. 1990

G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
Department of Pharmacology, University of Sydney, New South Wales, Australia.

Mice were premedicated with reserpine and alpha-methyl-p-tyrosine to deplete stores of dopamine (DA) (and other neurotransmitters) and to stop DA (and noradrenaline (NA] synthesis. In DA-depleted mice, the mixed alpha 1/alpha 2 agonist clonidine potentiated locomotor stimulation induced by a low dose of apomorphine as measured in automated activity cages. Clonidine and the slightly alpha 1-selective agonist ST587, but not ST91, an alpha-agonist which does not readily cross the blood brain barrier, produced marked stimulation when combined with the selective D2 agonist quinpirole. The D1 -selective agonist SKF38393 also produced marked excitation when combined with quinpirole. All the selective agonists, bar quinpirole which in some cases produced a significant locomotor stimulation, were relatively inactive when given alone. A "blind" observational analysis of the animals challenged with clonidine plus quinpirole indicated an increase in sniffing, rearing and shaking behaviour. In contrast, observation of the animals challenged with SKF38393 plus quinpirole indicated increased sniffing, rearing and biting and, in one case, increased grooming behaviour. Clonidine did not produce excitation (in automated cages) when combined with the selective D1 agonist SKF38393. The excitation produced by clonidine plus quinpirole was blocked by the selective D2 antagonist raclopride but not by the selective D1 antagonist SCH23390. The stimulation was also blocked by the alpha 1 antagonist prazosin but not by the alpha 2 antagonists idazoxan or yohimbine. Biochemical analysis in the striata of mice challenged with clonidine plus quinpirole did not provide any obvious biochemical basis for the behavioural interaction. It is concluded that alpha 1 receptor agonists in combination with D2 DA agonists can produce marked stimulation in DA depleted mice.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008297 Male Males
D009043 Motor Activity Body movements of a human or an animal as a behavioral phenomenon. Activities, Motor,Activity, Motor,Motor Activities
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011292 Premedication Preliminary administration of a drug preceding a diagnostic, therapeutic, or surgical procedure. The commonest types of premedication are antibiotics (ANTIBIOTIC PROPHYLAXIS) and anti-anxiety agents. It does not include PREANESTHETIC MEDICATION. Premedications
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D012110 Reserpine An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. Raunervil,Raupasil,Rausedil,Rausedyl,Serpasil,Serpivite,V-Serp,V Serp
D003000 Clonidine An imidazoline sympatholytic agent that stimulates ALPHA-2 ADRENERGIC RECEPTORS and central IMIDAZOLINE RECEPTORS. It is commonly used in the management of HYPERTENSION. Catapres,Catapresan,Catapressan,Chlophazolin,Clofelin,Clofenil,Clonidine Dihydrochloride,Clonidine Hydrochloride,Clonidine Monohydrobromide,Clonidine Monohydrochloride,Clopheline,Dixarit,Gemiton,Hemiton,Isoglaucon,Klofelin,Klofenil,M-5041T,ST-155,Dihydrochloride, Clonidine,Hydrochloride, Clonidine,M 5041T,M5041T,Monohydrobromide, Clonidine,Monohydrochloride, Clonidine,ST 155,ST155
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug

Related Publications

G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
January 1988, Progress in neuro-psychopharmacology & biological psychiatry,
G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
November 2023, Clinical psychopharmacology and neuroscience : the official scientific journal of the Korean College of Neuropsychopharmacology,
G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
December 2008, Neuroscience letters,
G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
March 2004, Pharmacology, biochemistry, and behavior,
G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
January 1992, Journal of neural transmission. General section,
G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
January 1989, Pharmacology & toxicology,
G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
June 1986, European journal of pharmacology,
G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
May 1992, The Journal of pharmacology and experimental therapeutics,
G Eshel, and S B Ross, and D Kelder, and L E Edis, and D M Jackson
January 1986, Psychopharmacology,
Copied contents to your clipboard!