Somatostatin increases voltage-dependent potassium currents in rat somatotrophs. 1990

C Chen, and J Zhang, and J D Vincent, and J M Israel
Institute National de la Santé et de la Recherche Medicale U. 176, Bordeaux, France.

To study the modulatory effects of somatostatin on membrane K+ currents, whole cell voltage-clamp recordings were performed on identified rat somatotrophs in primary culture. In the presence of Co2+ (2 mM) and tetrodotoxin (1 microM) in the bath solution to block Ca2+ and Na+ inward currents, two types of voltage-activated K+ currents were identified on the basis of their kinetics and pharmacology. First, a delayed rectifier K+ current (IK) had a threshold of -20 mV, did not decay during voltage steps lasting 300 ms, and was markedly attenuated by extracellular application of tetraethylammonium (TEA, 10 mM). Second, a transient outward K+ current (IA) was activated at -40 mV (from a holding potential of -80 mV) and persisted despite the presence of TEA. This IA was blocked by 4-aminopyridine (2 mM). Somatostatin (10 nM) increased IK by 75% and IA by 45% without obvious effects on steady-state voltage dependency of activation or inactivation, and these effects were reversible. This increase in K+ currents may contribute in part to the inhibitory effect of somatostatin on growth hormone release.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003035 Cobalt A trace element that is a component of vitamin B12. It has the atomic symbol Co, atomic number 27, and atomic weight 58.93. It is used in nuclear weapons, alloys, and pigments. Deficiency in animals leads to anemia; its excess in humans can lead to erythrocytosis. Cobalt-59,Cobalt 59
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

C Chen, and J Zhang, and J D Vincent, and J M Israel
February 1997, Sheng li xue bao : [Acta physiologica Sinica],
C Chen, and J Zhang, and J D Vincent, and J M Israel
April 1999, Neuroendocrinology,
C Chen, and J Zhang, and J D Vincent, and J M Israel
January 2011, Journal of neuroendocrinology,
C Chen, and J Zhang, and J D Vincent, and J M Israel
January 1985, Nature,
C Chen, and J Zhang, and J D Vincent, and J M Israel
January 2006, Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology,
C Chen, and J Zhang, and J D Vincent, and J M Israel
February 2002, Neuroscience research,
C Chen, and J Zhang, and J D Vincent, and J M Israel
July 1992, Journal of neuroscience research,
C Chen, and J Zhang, and J D Vincent, and J M Israel
December 2004, Glia,
C Chen, and J Zhang, and J D Vincent, and J M Israel
December 1990, Neuroendocrinology,
C Chen, and J Zhang, and J D Vincent, and J M Israel
August 1998, The American journal of physiology,
Copied contents to your clipboard!