Effects of fatty acids on metabolism and cell growth of human colon cell lines of different transformation state. 2009

Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
Department for Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller-University Jena, Dornburger Strasse 24, D-07743 Jena, Germany. Nina.habermann@gmail.com

Epidemiological studies suggest that high fish intake is associated with a decreased risk of colorectal cancer which has been linked to the high content of the n - 3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in some fish. In this study, two different cell lines are compared in relation to their response to EPA and DHA versus the plant derived PUFAs, linoleic acid (LA), gamma-linolenic acid (GLA), and alpha-linolenic acid (ALA) and to the ubiquitous arachidonic acid (ARA). The uptake of 100 microM of each fatty acid (FA) was determined using GC. The 4',6-diamidino-2-phenylindole assay for DNA quantification and the Cell-Titer-Blue assay were used to determine cell survival and metabolic activity at 2-72 h after treatment. All FAs were utilized more efficiently by the human colon adenoma cell line LT97 than by the adenocarcinoma cell line HT29. LT97 were more susceptible than HT29 cells to the growth inhibitory activities of all FAs except for DHA where both were equally sensitive. Inhibition of survival and metabolic activity by EPA and DHA increased with treatment time in both cell lines. ALA or GLA were less growth inhibitory than EPA or DHA and ARA had intermediary activity. The data show that the tested FAs are incorporated into colon cells. Furthermore, adenoma cells are more susceptible than the adenocarcinoma cells.

UI MeSH Term Description Entries
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D003110 Colonic Neoplasms Tumors or cancer of the COLON. Cancer of Colon,Colon Adenocarcinoma,Colon Cancer,Cancer of the Colon,Colon Neoplasms,Colonic Cancer,Neoplasms, Colonic,Adenocarcinoma, Colon,Adenocarcinomas, Colon,Cancer, Colon,Cancer, Colonic,Cancers, Colon,Cancers, Colonic,Colon Adenocarcinomas,Colon Cancers,Colon Neoplasm,Colonic Cancers,Colonic Neoplasm,Neoplasm, Colon,Neoplasm, Colonic,Neoplasms, Colon
D004281 Docosahexaenoic Acids C22-unsaturated fatty acids found predominantly in FISH OILS. Docosahexaenoate,Docosahexaenoic Acid,Docosahexenoic Acids,Docosahexaenoic Acid (All-Z Isomer),Docosahexaenoic Acid Dimer (All-Z Isomer),Docosahexaenoic Acid, 3,6,9,12,15,18-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cerium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Cesium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(All-Z-Isomer), Potassium Salt,Docosahexaenoic Acid, 4,7,10,13,16,19-(Z,Z,Z,Z,Z,E-Isomer),Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer,Docosahexaenoic Acid, 4,7,10,13,16,19-Isomer, Sodium Salt,Docosahexaenoic Acid, Sodium Salt,Acid, Docosahexaenoic,Acids, Docosahexaenoic,Acids, Docosahexenoic
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000230 Adenocarcinoma A malignant epithelial tumor with a glandular organization. Adenocarcinoma, Basal Cell,Adenocarcinoma, Granular Cell,Adenocarcinoma, Oxyphilic,Adenocarcinoma, Tubular,Adenoma, Malignant,Carcinoma, Cribriform,Carcinoma, Granular Cell,Carcinoma, Tubular,Adenocarcinomas,Adenocarcinomas, Basal Cell,Adenocarcinomas, Granular Cell,Adenocarcinomas, Oxyphilic,Adenocarcinomas, Tubular,Adenomas, Malignant,Basal Cell Adenocarcinoma,Basal Cell Adenocarcinomas,Carcinomas, Cribriform,Carcinomas, Granular Cell,Carcinomas, Tubular,Cribriform Carcinoma,Cribriform Carcinomas,Granular Cell Adenocarcinoma,Granular Cell Adenocarcinomas,Granular Cell Carcinoma,Granular Cell Carcinomas,Malignant Adenoma,Malignant Adenomas,Oxyphilic Adenocarcinoma,Oxyphilic Adenocarcinomas,Tubular Adenocarcinoma,Tubular Adenocarcinomas,Tubular Carcinoma,Tubular Carcinomas
D000236 Adenoma A benign epithelial tumor with a glandular organization. Adenoma, Basal Cell,Adenoma, Follicular,Adenoma, Microcystic,Adenoma, Monomorphic,Adenoma, Papillary,Adenoma, Trabecular,Adenomas,Adenomas, Basal Cell,Adenomas, Follicular,Adenomas, Microcystic,Adenomas, Monomorphic,Adenomas, Papillary,Adenomas, Trabecular,Basal Cell Adenoma,Basal Cell Adenomas,Follicular Adenoma,Follicular Adenomas,Microcystic Adenoma,Microcystic Adenomas,Monomorphic Adenoma,Monomorphic Adenomas,Papillary Adenoma,Papillary Adenomas,Trabecular Adenoma,Trabecular Adenomas
D015118 Eicosapentaenoic Acid Important polyunsaturated fatty acid found in fish oils. It serves as the precursor for the prostaglandin-3 and thromboxane-3 families. A diet rich in eicosapentaenoic acid lowers serum lipid concentration, reduces incidence of cardiovascular disorders, prevents platelet aggregation, and inhibits arachidonic acid conversion into the thromboxane-2 and prostaglandin-2 families. 5,8,11,14,17-Eicosapentaenoic Acid,Icosapent,5,8,11,14,17-Icosapentaenoic Acid,Eicosapentanoic Acid,Timnodonic Acid,omega-3-Eicosapentaenoic Acid,Acid, Eicosapentanoic,omega 3 Eicosapentaenoic Acid
D016718 Arachidonic Acid An unsaturated, essential fatty acid. It is found in animal and human fat as well as in the liver, brain, and glandular organs, and is a constituent of animal phosphatides. It is formed by the synthesis from dietary linoleic acid and is a precursor in the biosynthesis of prostaglandins, thromboxanes, and leukotrienes. (all-Z)-5,8,11,14-Eicosatetraenoic acid,Arachidonic Acid, (all-Z)-Isomer, 1-(14)C-Labeled,Arachidonic Acid, (all-Z)-isomer, 3H-Labeled,Arachidonic Acid, Ammonium Salt, (all-Z)-Isomer,Arachidonic Acid, Cerium Salt, (all-Z)-Isomer,Arachidonic Acid, Cesium Salt, (all-Z)-Isomer,Arachidonic Acid, Lithium Salt, (all-Z)-Isomer,Arachidonic Acid, Potassium Salt, (all-Z)-Isomer,Arachidonic Acid, Sodium Salt,Arachidonic Acid, Sodium Salt, (all-Z)-Isomer,Arachidonic Acid, Zinc Salt, (all-Z)-Isomer,Sodium Arachidonate,Vitamin F,Arachidonate, Sodium
D045744 Cell Line, Tumor A cell line derived from cultured tumor cells. Tumor Cell Line,Cell Lines, Tumor,Line, Tumor Cell,Lines, Tumor Cell,Tumor Cell Lines

Related Publications

Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
December 1998, Clinical cancer research : an official journal of the American Association for Cancer Research,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
April 2019, Journal of agricultural and food chemistry,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
January 1991, The Prostate,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
September 1992, International journal of cancer,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
March 1996, Lipids,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
January 1988, Nutrition reviews,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
January 1987, Anticancer research,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
June 2005, Toxicology in vitro : an international journal published in association with BIBRA,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
December 1988, Cancer letters,
Nina Habermann, and Bernd Christian, and Bernd Luckas, and Beatrice L Pool-Zobel, and Elizabeth K Lund, and Michael Glei
October 2005, Gynecologic oncology,
Copied contents to your clipboard!