Counterflow of L-glutamate in plasma membrane vesicles and reconstituted preparations from rat brain. 1990

G Pines, and B I Kanner
Department of Biochemistry, Hadassah Medical School, Hebrew University, Jerusalem, Israel.

Membrane vesicles from rat brain exhibit sodium-dependent uptake of L-[3H]glutamate in the absence of any transmembrane ion gradients. The substrate specificity of the process is identical with (Na+ + K+)-coupled L-glutamate accumulation. Although these vesicles are prepared after osmotic shock and are washed repeatedly, they contain about 1.5 nmol/mg of protein endogenous L-glutamate, apparently located inside the vesicles. The affinity of the process (Km approximately 1 microM) is similar to that of (Na+ + K+)-dependent accumulation by the L-glutamate transporter. Membrane vesicles have been disrupted by the detergent cholate, and the solubilized proteins have been subsequently reconstituted into liposomes. The reconstituted proteoliposomes also exhibit the above uptake--with the same characteristics--provided they contain entrapped cold L-glutamate. Counterflow is optimal when sodium is present on both sides of the membrane, but partial activity is still observed when sodium is present either on the inside or on the outside. Increasing the L-glutamate concentration above the Km results in counterflow completely independent of cis sodium. The initial rate of counterflow is 100-200-fold lower than that of net trans potassium dependent flux. The rate of net flux in the presence of trans sodium or lithium is about 10-fold lower than when choline or Tris are used instead. However, the rate of counterflow (no internal potassium present) was not stimulated by replacing internal sodium or lithium by internal choline. Therefore, optimal functioning of the transporter requires internal potassium while internal sodium and lithium are inhibitory.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities

Related Publications

G Pines, and B I Kanner
February 1982, European journal of biochemistry,
G Pines, and B I Kanner
September 1978, Biochemistry,
G Pines, and B I Kanner
September 1981, Molecular and cellular biochemistry,
G Pines, and B I Kanner
December 1981, Journal of neurochemistry,
G Pines, and B I Kanner
October 1981, The Journal of biological chemistry,
G Pines, and B I Kanner
July 1995, Pediatric research,
G Pines, and B I Kanner
June 1982, Biochimica et biophysica acta,
G Pines, and B I Kanner
April 1981, Archives of biochemistry and biophysics,
Copied contents to your clipboard!